Skip to main content

Nucleotide-Level Profiling of m5C RNA Methylation

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

Abstract

Mapping the position and quantifying the level of 5-methylcytosine (m5C) as a modification in different types of cellular RNA is an important objective in the emerging field of epitranscriptomics. Bisulfite conversion has long been the gold standard for detection of m5C in DNA but it can also be applied to RNA. Here, we detail methods for bisulfite treatment of RNA, locus-specific PCR amplification and detection of candidate sites by sequencing on the Illumina MiSeq platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantara WA, Crain PF, Rozenski J et al (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39:D195–D201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Milanowska K, Mikolajczak K, Lukasik A et al (2013) RNApathwaysDB--a database of RNA maturation and decay pathways. Nucleic Acids Res 41:D268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Machnicka MA, Milanowska K, Osman OO et al (2012) MODOMICS: a database of RNA modification pathways--2012 update. Nucleic Acids Res 41:D262–D267

    Article  PubMed Central  PubMed  Google Scholar 

  4. Saletore Y, Meyer K, Korlach J et al (2012) The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13:175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fu Y, He C (2012) Nucleic acid modifications with epigenetic significance. Curr Opin Chem Biol 16:516–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sibbritt T, Patel HR, Preiss T (2013) Mapping and significance of the mRNA methylome. WIREs RNA 4:397–422

    Article  CAS  PubMed  Google Scholar 

  7. Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz S, Mumbach MR, Jovanovic M et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9:e110799

    Article  PubMed Central  PubMed  Google Scholar 

  14. Edelheit S, Schwartz S, Mumbach MR et al (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hussain S, Sajini AA, Blanco S et al (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gu W, Hurto RL, Hopper AK et al (2005) Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol 25:8191–8201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schaefer M, Pollex T, Hanna K et al (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pollex T, Hanna K, Schaefer M (2010) Detection of cytosine methylation in RNA using bisulfite sequencing. Cold Spring Harb Protoc 2010:pdb.prot5505

    Article  PubMed  Google Scholar 

  20. Tusnady GE, Simon I, Varadi A et al (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33:e9

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Wenjia Qu for helpful suggestions for the MiSeq library preparation protocol. We also thank Ulrike Schumann for helpful suggestions on this manuscript. This work was supported by an NHMRC grant (APP1061551) and a Senior Research Fellowship (514904) awarded to TP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Preiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sibbritt, T., Shafik, A., Clark, S.J., Preiss, T. (2016). Nucleotide-Level Profiling of m5C RNA Methylation. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics