Skip to main content

Capture and Identification of miRNA Targets by Biotin Pulldown and RNA-seq

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate the stability and expression of target RNAs in a sequence-dependent manner. Identifying miRNA-regulated genes is key to understanding miRNA function. Here, we describe an unbiased biochemical pulldown method to identify with high-specificity miRNA targets. Regulated transcripts are enriched in streptavidin-captured mRNAs that bind to a transfected biotinylated miRNA mimic. The method is relatively simple, does not involve cross-linking and can be performed with only a million cells. Addition of an on-bead RNase digestion step also identifies miRNA recognition elements (MRE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  3. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  4. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174

    Article  CAS  PubMed  Google Scholar 

  5. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, Leslie CS, Rudensky AY (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48:760–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N (2014) Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  CAS  PubMed  Google Scholar 

  12. Lal A, Thomas MP, Altschuler G, Navarro F, O'Day E, Li XL, Concepcion C, Han YC, Thiery J, Rajani DK et al (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7:e1002363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tan SM, Kirchner R, Jin J, Hofmann O, McReynolds L, Hide W, Lieberman J (2014) Sequencing and systems analysis of captive target transcripts identifies primate-specific miR-522 as an inducer of mesenchymal transition. Cell Rep 8:1225–1239

    Article  CAS  PubMed  Google Scholar 

  14. Perdigao-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MT, Tan SM et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 2015. Advanced doi: 10.1038/onc.2015.69.online publicaton

  15. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  16. Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E et al (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12:R126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L, Lagna G, Hata A (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, O'Day E, Korzh V, Yang H, Lal A et al (2011) Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 7:e1002242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, Vlassov A, Grimmond SM, Cloonan N (2014) Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol 15:R51

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Guo YE, Steitz JA (2014) 3′-Biotin-tagged microRNA-27 does not associate with Argonaute proteins in cells. RNA 20:985–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jingmin Jin and Larry McReynolds for their sequencing expertise, Rory Kirchner, Oliver Hofmann and Winston Hide for their bioinformatics expertise, and members of the Lieberman lab for critical discussions. S.M.T. was supported by the Department of Defense (DOD) Breast Cancer Research Program (BCRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Lieberman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tan, S.M., Lieberman, J. (2016). Capture and Identification of miRNA Targets by Biotin Pulldown and RNA-seq. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics