Skip to main content

Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Histone posttranslational modifications (PTMs) have a crucial role in chromatin regulation and dynamics. They are specifically bound by so-called reading domains, which mediate the biological effects of histone PTMs. On a similar note, antibodies are invaluable reagents in chromatin biology for the detection, characterization, and mapping of histone PTMs. Despite these central roles in chromatin research and biology, the specificity of many antibodies and reading domains has been insufficiently characterized and documented. Here we describe in detail the application of the MODified™ Histone Peptide Array for the investigation of the binding specificity of histone binding antibodies or domains. The array contains 384 histone tail peptides carrying 59 posttranslational modifications in different combinations which can be used to study the primary binding specificity, but at the same time also allow to determine the combinatorial effect of secondary marks on antibody or reading domain binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubner MR, Spector DL (2010) Chromatin dynamics. Annu Rev Biophys 39:471–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  3. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  4. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Suva ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339:1567–1570

    Article  CAS  PubMed  Google Scholar 

  8. Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24:231–237

    Article  CAS  PubMed  Google Scholar 

  9. Huttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635–646

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bock I, Dhayalan A, Kudithipudi S et al (2011) Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics 6:256–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Egelhofer TA, Minoda A, Klugman S et al (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fuchs SM, Strahl BD (2011) Antibody recognition of histone post-translational modifications: emerging issues and future prospects. Epigenomics 3:247–249

    Article  CAS  PubMed  Google Scholar 

  13. Nishikori S, Hattori T, Fuchs SM et al (2012) Broad ranges of affinity and specificity of anti-histone antibodies revealed by a quantitative peptide immunoprecipitation assay. J Mol Biol 424:391–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Peach SE, Rudomin EL, Udeshi ND et al (2012) Quantitative assessment of chromatin immunoprecipitation grade antibodies directed against histone modifications reveals patterns of co-occurring marks on histone protein molecules. Mol Cell Proteomics 11:128–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hattori T, Taft JM, Swist KM et al (2013) Recombinant antibodies to histone post-translational modifications. Nat Methods 10:992–995

    Article  CAS  PubMed  Google Scholar 

  16. Heubach Y, Planatscher H, Sommersdorf C et al (2013) From spots to beads-PTM-peptide bead arrays for the characterization of anti-histone antibodies. Proteomics 13:1010–1015

    Article  CAS  PubMed  Google Scholar 

  17. Taverna SD, Li H, Ruthenburg AJ et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  CAS  PubMed  Google Scholar 

  18. Patel DJ, Wang Z (2013) Readout of epigenetic modifications. Annu Rev Biochem 82:81–118

    Article  CAS  PubMed  Google Scholar 

  19. Winkler DF, Hilpert K, Brandt O et al (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. Methods Mol Biol 570:157–174

    Article  CAS  PubMed  Google Scholar 

  20. Bock I, Kudithipudi S, Tamas R et al (2011) Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem 12:48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dhayalan A, Tamas R, Bock I et al (2011) The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet 20:2195–2203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kycia I, Kudithipudi S, Tamas R et al (2014) The Tudor domain of the PHD finger protein 1 is a dual reader of lysine trimethylation at lysine 36 of histone H3 and lysine 27 of histone variant H3t. J Mol Biol 426:1651–1660

    Article  CAS  PubMed  Google Scholar 

  23. Pradeepa MM, Sutherland HG, Ule J et al (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8, e1002717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Du J, Zhong X, Bernatavichute YV et al (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:167–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Darvekar S, Johnsen SS, Eriksen AB et al (2012) Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP. Biochem J 442:65–75

    Article  CAS  PubMed  Google Scholar 

  26. Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58:439–445

    Article  CAS  PubMed  Google Scholar 

  27. Park S, Martinez-Yamout MA, Dyson HJ et al (2013) The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett 587:2506–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pestell RG, Yu Z (2014) Long and noncoding RNAs (lnc-RNAs) determine androgen receptor dependent gene expression in prostate cancer growth in vivo. Asian J Androl 16:268–269

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zucchelli C, Tamburri S, Quilici G et al (2014) Structure of human Sp140 PHD finger: an atypical fold interacting with Pin1. FEBS J 281:216–231

    Article  CAS  PubMed  Google Scholar 

  30. Alsarraj J, Faraji F, Geiger TR et al (2013) BRD4 short isoform interacts with RRP1B, SIPA1 and components of the LINC complex at the inner face of the nuclear membrane. PLoS One 8, e80746

    Article  PubMed Central  PubMed  Google Scholar 

  31. Widiez T, Symeonidi A, Luo C et al (2014) The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant J 79:67–81

    Article  CAS  PubMed  Google Scholar 

  32. Du J, Johnson LM, Groth M et al (2014) Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 55(3):495–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ lab has been supported by the BMBF (0315886B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kungulovski, G., Kycia, I., Mauser, R., Jeltsch, A. (2015). Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics