Skip to main content

In Vitro Studies of Membrane Permeability Induced by Amyloidogenic Polypeptides Using Large Unilamellar Vesicles

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

The process of amyloid formation is cytotoxic and contributes to a wide range of human diseases, but the mechanisms of amyloid-induced cytotoxicity are not well understood. It has been proposed that amyloidogenic peptides exert their toxic effects by damaging membranes. Membrane disruption is clearly not the only mechanism of toxicity, but the literature suggests that loss of membrane integrity may be a contributing factor. In this chapter we describe the measurement of in vitro membrane leakage induced by amyloidogenic proteins via the use of model vesicles. We use islet amyloid polypeptide (IAPP, amylin) as an example, but the methods are general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  3. Sipe JD (1994) Amyloidosis. Crit Rev Clin Lab Sci 31:325–354

    Article  CAS  PubMed  Google Scholar 

  4. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    Article  CAS  PubMed  Google Scholar 

  5. Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498

    Article  CAS  PubMed  Google Scholar 

  6. Brender JR, Salamekh S, Ramamoorthy A (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 45:454–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. de Planque MRR, Raussens V, Contera SA, Rijkers DTS, Liskamp RMJ, Ruysschaert JM, Ryan JF, Separovic F, Watts A (2007) Beta-sheet structured beta-amyloid(1-40) perturbs phosphatidylcholine model membranes. J Mol Biol 368:982–997

    Article  PubMed  Google Scholar 

  8. Beyer K (2007) Mechanistic aspects of Parkinson’s disease: alpha-synuclein and the biomembrane. Cell Biochem Biophys 47:285–299

    Article  CAS  PubMed  Google Scholar 

  9. Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the b-cell secretory granules of the human pancreatic-islets. Diabetologia 32:240–244

    Article  CAS  PubMed  Google Scholar 

  10. Kahn SE, Dalessio DA, Schwartz MW, Fujimoto WY, Ensinck JW, Taborsky GJ, Porte D (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 39:634–638

    Article  CAS  PubMed  Google Scholar 

  11. Stridsberg M, Sandler S, Wilander E (1993) Cosecretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic-islets following stimulation or inhibition of beta-cell Function. Regul Pept 45:363–370

    Article  CAS  PubMed  Google Scholar 

  12. Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, Cooper GJS, Holman RR, Turner RC (1988) Islet amyloid, increased alpha-cells, reduced beta-cells and exocrine fibrosis—quantitative changes in the pancreas in type-2 diabetes. Diabetes Res Clin Ex 9:151–159

    CAS  Google Scholar 

  13. Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic-islet cell toxicity of amylin associated with type-2 diabetes-mellitus. Nature 368:756–760

    Article  CAS  PubMed  Google Scholar 

  14. Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2006) The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J 273:3614–3624

    Article  CAS  PubMed  Google Scholar 

  15. Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508

    Article  CAS  PubMed  Google Scholar 

  17. Hebda JA, Miranker AD (2009) The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38:125–152

    Article  CAS  PubMed  Google Scholar 

  18. Jayasinghe SA, Langen R (2007) Membrane interaction of islet amyloid polypeptide. Biochim Biophys Acta Biomembr 1768:2002–2009

    Article  CAS  Google Scholar 

  19. Engel MFM (2009) Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids 160:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Cao P, Abedini A, Wang H, Tu LH, Zhang XX, Schmidt AM, Raleigh DP (2013) Islet amyloid polypeptide toxicity and membrane interactions. Proc Natl Acad Sci U S A 110:19279–19284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT (2012) Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc 134:12658–12667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stewart JCM (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  23. Abedini A, Singh G, Raleigh DP (2006) Recovery and purification of highly aggregation-prone disulfide-containing peptides: application to islet amyloid polypeptide. Anal Biochem 351:181–186

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson MR, Raleigh DP (1999) Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J Mol Biol 294:1375–1385

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308

    Article  CAS  PubMed  Google Scholar 

  27. Lin Q, London E (2014) Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 9:e87903

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM078114 (D.P.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Raleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cao, P., Raleigh, D.P. (2016). In Vitro Studies of Membrane Permeability Induced by Amyloidogenic Polypeptides Using Large Unilamellar Vesicles. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics