Skip to main content

Regulation of TGF-β Receptors

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

In cells responding to extracellular polypeptide ligands, regulatory mechanisms at the level of cell surface receptors are increasingly seen to define the nature of the ligand-induced signaling responses. Processes that govern the levels of receptors at the plasma membrane, including posttranslational modifications, are crucial to ensure receptor function and specify the downstream signals. Indeed, extracellular posttranslational modifications of the receptors help define stability and ligand binding, while intracellular modifications mediate interactions with signaling mediators and accessory proteins that help define the nature of the signaling response. The use of various molecular biology and biochemistry techniques, based on chemical crosslinking, e.g., biotin or radioactive labeling, immunofluorescence to label membrane receptors and flow cytometry, allows for quantification of changes of cell surface receptor presentation. Here, we discuss recent progress in our understanding of the regulation of TGF-β receptors, i.e., the type I (TβRI) and type II (TβRII) TGF-β receptors, and describe basic methods to identify and quantify TGF-β cell surface receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyazono K, Derynck R (2008) The TGF-[beta] family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  2. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  5. Lawler S, Feng X-H, Chen R-H, Maruoka EM, Turck CW, Griswold-Prenner I et al (1997) The type II transforming growth factor-b receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 272(23):14850–14859

    Article  CAS  PubMed  Google Scholar 

  6. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J et al (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26(17):3957–3967, PMCID: 1994119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK et al (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030):701–705

    Article  CAS  PubMed  Google Scholar 

  8. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor -like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN et al (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A 102(50):18117–18122, PMCID: 1306793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ehrlich M, Horbelt D, Marom B, Knaus P, Henis YI (2011) Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal 23(9):1424–1432

    Article  CAS  PubMed  Google Scholar 

  11. Luo K, Lodish HF (1997) Positive and negative regulation of type II TGF-b receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 16(8):1970–1981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Derynck R, Feng XH (1997) TGF-beta receptor signaling. Biochim Biophys Acta 1333(2):105–150

    Google Scholar 

  13. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  14. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  CAS  PubMed  Google Scholar 

  15. Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67(8):3752–3758

    Article  CAS  PubMed  Google Scholar 

  16. Souchelnytskyi S, Dijke P, Miyazono K, Heldin CH (1996) Phosphorylation of Ser165 in TGF-13 type I receptor modulates TGF-f1-induced cellular responses. EMBO J 15(22):6231–6240

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Bennett D, Alphey L (2002) PP1 binds Sara and negatively regulates Dpp signaling in Drosophila melanogaster. Nat Genet 31(4):419–423

    CAS  PubMed  Google Scholar 

  18. Shi W, Sun C, He B, Xiong W, Shi X, Yao D et al (2004) GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 164(2):291–300, PMCID: 2172339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M (2008) Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Dev 135(17):2927–2937

    Article  CAS  Google Scholar 

  20. Griswold-Prenner I, Kamibayashi C, Maruoka EM, Mumby MC, Derynck R (1998) Physical and functional interactions between type I transforming growth factor b receptors and Ba, a WD-40 repeat subunit of phosphatase 2A. Mol Cell Biol 18(11):6595–6606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17(1-2):41–58

    Article  CAS  PubMed  Google Scholar 

  22. Grady WM, Markowitz SD (2002) Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 3:101–128

    Article  CAS  PubMed  Google Scholar 

  23. Galliher-Beckley AJ, Schiemann WP (2008) Grb2 binding to Tyr284 in TbetaR-II is essential for mammary tumor growth and metastasis stimulated by TGF-beta. Carcinogenesis 29(2):244–251, PMCID: 2615477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Weissman AM, Shabek N, Ciechanover A (2011) The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 12(9):605–620, PMCID: 3545438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Laney JD, Hochstrasser H (1999) Substrate targeting in the ubiquitin system. Cell 97(4):427–430

    Article  CAS  PubMed  Google Scholar 

  26. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–12480

    Article  CAS  PubMed  Google Scholar 

  27. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFb receptor for degradation. Mol Cell 6:1365–1375

    Article  CAS  PubMed  Google Scholar 

  28. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E et al (1997) TGF-b receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16(17):5353–5362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Miyazono K (2000) TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev 11(1-2):15–22

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu Y-Y, Topper JN et al (1997) The MAD-related protein Smad7 associates with the TGF-beta receptor and functions as an antagonist of TGF-beta signaling. Cell 89(June):1165–1173

    Article  CAS  PubMed  Google Scholar 

  31. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P et al (2005) Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19(3):297–308

    Article  CAS  PubMed  Google Scholar 

  32. Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K et al (2005) NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochem J 386:461–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K et al (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23(41):6914–6923

    Article  CAS  PubMed  Google Scholar 

  34. Pickart C (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  35. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  36. Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M et al (2011) TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2:330, PMCID: 3113296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S et al (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 13(11):1368–1375

    Article  CAS  PubMed  Google Scholar 

  38. Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E et al (2012) USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med 18(3):429–435

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C et al (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 14(7):717–726

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Berger FG, Yang J, Lu X (2011) USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J 30(11):2177–2189, PMCID: 3117646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  42. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871, PMCID: 3079294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4(9):690–699

    Article  CAS  PubMed  Google Scholar 

  44. Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12

    Article  CAS  PubMed  Google Scholar 

  45. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  46. Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664, PMCID: 2649123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y et al (2013) c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Mol Cell 49(3):499–510

    Article  CAS  PubMed  Google Scholar 

  48. Wells RG, Yankelev H, Lin HY, Lodish HF (1997) Biosynthesis of the type I and type II TGF-b receptors. J Biol Chem 272(17):11444–11451

    Article  CAS  PubMed  Google Scholar 

  49. Luga V, McLean S, Le Roy C, O’Connor-McCourt M, Wrana JL, Di Guglielmo GM (2009) The extracellular domain of the TGFbeta type II receptor regulates membrane raft partitioning. Biochem J 421(1):119–131

    Article  CAS  PubMed  Google Scholar 

  50. Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A et al (1993) Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 260(5112):1344–1348

    Article  CAS  PubMed  Google Scholar 

  51. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  PubMed  Google Scholar 

  52. Spiro RG (2002) Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glucopeptide bonds. Glycobiology 12(4):43–56

    Article  Google Scholar 

  53. Kim YW, Park J, Lee HJ, Lee SY, Kim SJ (2012) TGF-beta sensitivity is determined by N-linked glycosylation of the type II TGF-beta receptor. Biochem J 445(3):403–411, PMCID: 3462611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Huang S, Holzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U et al (2012) MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell 151(5):937–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8(3):245–257

    Article  CAS  PubMed  Google Scholar 

  56. Liu C, Xu P, Lamouille S, Xu J, Derynck R (2009) TACE-mediated ectodomain shedding of the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell 35(1):26–36, PMCID: 2740991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Xu P, Derynck R (2010) Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 37(4):551–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Atfi A, Dumont E, Colland F, Bonnier D, L’Helgoualc’h A, Prunier C et al (2007) The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol 178(2):201–208, PMCID: 2064440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Xu P, Liu J, Derynck R (2012) Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 586(14):1871–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Lopez-Casillas F, Payne HM, Andres JL, Massague J (1994) Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 124(4):557–568

    Article  CAS  PubMed  Google Scholar 

  61. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C (2002) Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277(32):29197–29209

    Article  CAS  PubMed  Google Scholar 

  62. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    Article  CAS  PubMed  Google Scholar 

  63. Scaffidi AK, Petrovic N, Moodley YP, Fogel-Petrovic M, Kroeger KM, Seeber RM et al (2004) Alpha(v)beta(3) integrin interacts with the transforming growth factor beta (TGFbeta) type II receptor to potentiate the proliferative effects of TGFbeta1 in living human lung fibroblasts. J Biol Chem 279(36):37726–37733

    Article  CAS  PubMed  Google Scholar 

  64. Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN et al (2009) Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 184(2):309–322, PMCID: 2654298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Rudini N, Felici A, Giampietro C, Lampugnani M, Corada M, Swirsding K et al (2008) VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 27:993–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Andl CD, Fargnoli BB, Okawa T, Bowser M, Takaoka M, Nakagawa H et al (2006) Coordinated functions of E-cadherin and transforming growth factor beta receptor II in vitro and in vivo. Cancer Res 66(20):9878–9885, PMCID: 2996096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Jin W, Yun C, Kwak MK, Kim TA, Kim SJ (2007) TrkC binds to the type II TGF-beta receptor to suppress TGF-beta signaling. Oncogene 26(55):7684–7691

    Article  CAS  PubMed  Google Scholar 

  68. Jin W, Kim BC, Tognon C, Lee HJ, Patel S, Lannon CL et al (2005) The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci U S A 102(45):16239–16244, PMCID: 1283417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S et al (2006) Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes. FASEB J 20(9):1525–1527

    Article  CAS  PubMed  Google Scholar 

  70. Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW et al (2011) The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors. Biochim Biophys Acta 1813(5):742–753

    Article  CAS  PubMed  Google Scholar 

  71. Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A (2012) CD109-mediated degradation of TGF-beta receptors and inhibition of TGF-beta responses involve regulation of SMAD7 and Smurf2 localization and function. J Cell Biochem 113(1):238–246

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Liu F, Massague J (1997) Mechanism of TGF-beta receptor inhibition by FKBP12. EMBO J 16(13):3866–3876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massague J (2001) The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell 8(3):671–682

    Article  CAS  PubMed  Google Scholar 

  74. Meng Q, Lux A, Holloschi A, Li J, Hughes JM, Foerg T et al (2006) Identification of Tctex2beta, a novel dynein light chain family member that interacts with different transforming growth factor-beta receptors. J Biol Chem 281(48):37069–37080

    Article  CAS  PubMed  Google Scholar 

  75. Datta PK, Moses HL (2000) STRAP and Smad7 synergize in the inhibition oftransforming growth factor-beta signaling. Mol Cell Biol 20(9):3157–3167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF-b receptor. Cell 95(6):779–791

    Article  CAS  PubMed  Google Scholar 

  77. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y et al (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20(24):9346–9355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Wrighton KH, Lin X, Feng XH (2008) Critical regulation of TGFbeta signaling by Hsp90. Proc Natl Acad Sci U S A 105(27):9244–9249, PMCID: 2453700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19(8):385–394

    Article  CAS  PubMed  Google Scholar 

  80. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31(6):918–924, PMCID: 2621323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Neil JR, Tian M, Schiemann WP (2009) X-linked inhibitor of apoptosis protein and its E3 ligase activity promote transforming growth factor-{beta}-mediated nuclear factor-{kappa}B activation during breast cancer progression. J Biol Chem 284(32):21209–21217, PMCID: 2755844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672

    Article  CAS  PubMed  Google Scholar 

  83. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219

    Article  CAS  PubMed  Google Scholar 

  84. Mitchell H, Choudhury A, Pagano RE, Leof EB (2004) Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15(9):4166–4178, PMCID: 515349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421

    Article  PubMed  CAS  Google Scholar 

  86. Ehrlich M, Shmuely A, Henis Y (2001) A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-beta receptor. J Cell Sci 114(May):1777–1786

    CAS  PubMed  Google Scholar 

  87. Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJE, Leof EB (2002) Internalization-dependent and -independent requirements for transforming growth factor receptor signaling via the Smad pathway. Mol Cell Biol 22(13):4750–4759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Yao D, Ehrlich M, Henis YI, Leof EB (2002) Transforming growth factor-beta receptors interact with AP2 by direct binding to beta2 subunit. Mol Biol Cell 13(11):4001–4012, PMCID: 133610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Hayes S, Chawla A, Corvera S (2002) TGFbeta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158(7):1239–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP (2001) Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 276(9):6727–6738

    Article  CAS  PubMed  Google Scholar 

  91. Zhang XL, Topley N, Ito T, Phillips A (2005) Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. J Biol Chem 280(13):12239–12245

    Article  CAS  PubMed  Google Scholar 

  92. Zuo W, Chen YG (2009) Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 20(3):1020–1029, PMCID: 2633387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Hu H, Milstein M, Bliss JM, Thai M, Malhotra G, Huynh LC et al (2008) Integration of transforming growth factor beta and RAS signaling silences a RAB5 guanine nucleotide exchange factor and enhances growth factor-directed cell migration. Mol Cell Biol 28(5):1573–1583, PMCID: 2258770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Hocevar BA, Smine A, Xu X-X, Howe PH (2001) The adaptor molecule Disabled-2 links the transforming growth factor b receptors to the Smad pathway. EMBO J 20(11):2789–2801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Penheiter SG, Singh RD, Repellin CE, Wilkes MC, Edens M, Howe PH et al (2010) Type II transforming growth factor-beta receptor recycling is dependent upon the clathrin adaptor protein Dab2. Mol Biol Cell 21(22):4009–4019, PMCID: 2982134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Choi SC, Kim GH, Lee SJ, Park E, Yeo CY, Han JK (2008) Regulation of activin/nodal signaling by Rap2-directed receptor trafficking. Dev Cell 15(1):49–61

    Article  CAS  PubMed  Google Scholar 

  97. Zhang L, Zhou H, Su Y, Sun Z, Zhang H, Zhang Y et al (2004) Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306(5693):114–117

    Article  CAS  PubMed  Google Scholar 

  98. Su Y, Zhang L, Gao X, Meng F, Wen J, Zhou H et al (2007) The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. FASEB J 21(March):682–690

    Article  CAS  PubMed  Google Scholar 

  99. Wu L, Derynck R (2009) Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev Cell 17(1):35–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Gross DN, Farmer SR, Pilch PF (2004) Glut4 storage vesicles without Glut4: transcriptional regulation of insulin-dependent vesicular traffic. Mol Cell Biol 24(16):7151–7162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Lyons RM, Millerf DA, Graycar JL, Moses HL, Derynck R (1991) Differential binding of transforming growth factor-beta1, -2, and -3 by fibroblasts and epithelial cells measured by affinity cross-linking of cell surface receptors. Mol Endocrinol 5(12):1887–1896

    Article  CAS  PubMed  Google Scholar 

  102. Frolik CA, Wakefield LM, Smith DM, Sporn MB (1984) Characterization of a membrane receptor for TGF-beta in normal rat kidney fibroblasts. J Biol Chem 259(17):10995–11000

    CAS  PubMed  Google Scholar 

  103. Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y et al (2001) Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol 21(15):5132–5141, PMCID: 87238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Liu W, Rui H, Wang J, Lin S, He Y, Chen M et al (2006) Axin is a scaffold protein in TGF-beta signaling thatpromotes degradation of Smad7 by Arkadia. EMBO J 25:1646–1658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF (2008) Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev 22(1):106–120, PMCID: 2151009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Kwak JH, Kim SI, Kim JK, Choi ME (2008) BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. J Biol Chem 283(28):19816–19825, PMCID: 2443666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Ferrand N, Atfi A, Prunier C (2010) The oncoprotein c-ski functions as a direct antagonist of the transforming growth factor-{beta} type I receptor. Cancer Res 70(21):8457–8466

    Article  CAS  PubMed  Google Scholar 

  108. Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277(42):39703–39712

    Article  CAS  PubMed  Google Scholar 

  109. Seo SR, Ferrand N, Faresse N, Prunier C, Abecassis L, Pessah M et al (2006) Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Mol Cell 23(4):547–559

    Article  CAS  PubMed  Google Scholar 

  110. Yamaguchi T, Kurisaki A, Yamakawa N, Minakuchi K, Sugino H (2006) FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J Mol Endocrinol 36(3):569–579

    Article  CAS  PubMed  Google Scholar 

  111. Huse M, Chen YG, Massague J, Kuriyan J (1999) Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell 96(3):425–436

    Article  CAS  PubMed  Google Scholar 

  112. Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA et al (2003) SARA and Hgs attenuate susceptibility to TGF-beta1-mediated T cell suppression. FASEB J 17(2):194–202

    Article  CAS  PubMed  Google Scholar 

  113. Wrighton KH, Lin X, Feng XH (2009) Phospho-control of TGF-beta superfamily signaling. Cell Res 19(1):8–20, PMCID: 2929013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Lallemand F, Seo SR, Ferrand N, Pessah M, L’Hoste S, Rawadi G et al (2005) AIP4 restricts transforming growth factor-beta signaling through a ubiquitination-independent mechanism. J Biol Chem 280(30):27645–27653

    Article  CAS  PubMed  Google Scholar 

  115. Bai Y, Yang C, Hu K, Elly C, Liu YC (2004) Itch E3 ligase-mediated regulation of TGF-beta signaling by modulating smad2 phosphorylation. Mol Cell 15(5):825–831

    Article  CAS  PubMed  Google Scholar 

  116. Jin Q, Ding W, Mulder KM (2007) Requirement for the dynein light chain km23-1 in a Smad2-dependent transforming growth factor-beta signaling pathway. J Biol Chem 282(26):19122–19132

    Article  CAS  PubMed  Google Scholar 

  117. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120–124

    Article  CAS  PubMed  Google Scholar 

  118. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS et al (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715):1621–1625

    Article  CAS  PubMed  Google Scholar 

  119. Seong HA, Jung H, Choi HS, Kim KT, Ha H (2005) Regulation of transforming growth factor-beta signaling and PDK1 kinase activity by physical interaction between PDK1 and serine-threonine kinase receptor-associated protein. J Biol Chem 280(52):42897–42908

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H et al (2009) Rock2 controls TGF-beta signaling and inhibits mesoderm induction in zebrafish embryos. J Cell Sci 122:2197–2207

    Article  CAS  PubMed  Google Scholar 

  121. Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL et al (2000) Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287(5450):92–97

    Article  CAS  PubMed  Google Scholar 

  122. Kowanetz M, Lonn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A (2008) TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol 182(4):655–662, PMCID: 2518705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Lonn P, Vanlandewijck M, Raja E, Kowanetz M, Watanabe Y, Kowanetz K et al (2012) Transcriptional induction of salt-inducible kinase 1 by transforming growth factor beta leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase. J Biol Chem 287(16):12867–12878, PMCID: 3339966

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Felici A, Wurthner JU, Parks WT, Giam LR, Reiss M, Karpova TS et al (2003) TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. EMBO J 22(17):4465–4477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F et al (2010) TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell 37(1):123–134

    Article  CAS  PubMed  Google Scholar 

  126. Zhu L, Wang L, Luo X, Zhang Y, Ding Q, Jiang X et al (2012) Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-beta signaling pathway. J Biol Chem 287(47):39653–39663, PMCID: 3501082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A et al (2002) Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21:4879–4884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Kissner for discussion on the flow cytometry experiments. Research by the authors is sponsored by a Juvenile Diabetes Research Fund postdoctoral fellowship to E.B., an American Heart Association scientist development award to J.X., and NIH RO1 grants CA63101 and CA136690 to R.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik Derynck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Budi, E.H., Xu, J., Derynck, R. (2016). Regulation of TGF-β Receptors. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics