Skip to main content

Cytokines and Immune Responses in Murine Atherosclerosis

  • Protocol
Methods in Mouse Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1339))

Abstract

Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Legein B, Temmerman L, Biessen EA et al (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70(20):3847–3869. doi:10.1007/s00018-013-1289-1

    Article  CAS  PubMed  Google Scholar 

  2. Kamari Y, Werman-Venkert R, Shaish A et al (2007) Differential role and tissue specificity of interleukin-1alpha gene expression in atherogenesis and lipid metabolism. Atherosclerosis 195(1):31–38. doi:10.1016/j.atherosclerosis.2006.11.026

    Article  CAS  PubMed  Google Scholar 

  3. Kamari Y, Shaish A, Shemesh S et al (2011) Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1alpha. Biochem Biophys Res Commun 405(2):197–203. doi:10.1016/j.bbrc.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  4. Tissot AC, Spohn G, Jennings GT et al (2013) A VLP-based vaccine against interleukin-1alpha protects mice from atherosclerosis. Eur J Immunol 43(3):716–722. doi:10.1002/eji.201242687

    Article  CAS  PubMed  Google Scholar 

  5. Freigang S, Ampenberger F, Weiss A et al (2013) Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nat Immunol 14(10):1045–1053. doi:10.1038/ni.2704

    Article  CAS  PubMed  Google Scholar 

  6. Kirii H, Niwa T, Yamada Y et al (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23(4):656–660. doi:10.1161/01.ATV.0000064374.15232.C3

    Article  CAS  PubMed  Google Scholar 

  7. Bhaskar V, Yin J, Mirza AM et al (2011) Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis 216(2):313–320. doi:10.1016/j.atherosclerosis.2011.02.026

    Article  CAS  PubMed  Google Scholar 

  8. Ikonomidis I, Lekakis JP, Nikolaou M et al (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117(20):2662–2669. doi:10.1161/CIRCULATIONAHA.107.731877

    Article  CAS  PubMed  Google Scholar 

  9. Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 36(6):1118–1125. doi:10.3899/jrheum.090074

    Article  CAS  PubMed  Google Scholar 

  10. Crossman DC, Morton AC, Gunn JP et al (2008) Investigation of the effect of Interleukin-1 receptor antagonist (IL-1ra) on markers of inflammation in non-ST elevation acute coronary syndromes (The MRC-ILA-HEART Study). Trials 9:8. doi:10.1186/1745-6215-9-8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361. doi:10.1038/nature08938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Xie Q, Shen WW, Zhong J et al (2014) Lipopolysaccharide/adenosine triphosphate induces IL1beta and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells. Int J Mol Med 34(1):341–349. doi:10.3892/ijmm.2014.1755

    CAS  PubMed  Google Scholar 

  13. Gaffen SL, Liu KD (2004) Overview of interleukin-2 function, production and clinical applications. Cytokine 28(3):109–123. doi:10.1016/j.cyto.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  14. Elkind MS, Rundek T, Sciacca RR et al (2005) Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis 180(1):181–187. doi:10.1016/j.atherosclerosis.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Upadhya S, Mooteri S, Peckham N et al (2004) Atherogenic effect of interleukin-2 and antiatherogenic effect of interleukin-2 antibody in apo-E-deficient mice. Angiology 55(3):289–294

    Article  PubMed  Google Scholar 

  16. Dinh TN, Kyaw TS, Kanellakis P et al (2012) Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4 + CD25 + Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126(10):1256–1266. doi:10.1161/CIRCULATIONAHA.112.099044

    Article  CAS  PubMed  Google Scholar 

  17. Ait-Oufella H, Salomon BL, Potteaux S et al (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12(2):178–180. doi:10.1038/nm1343

    Article  CAS  PubMed  Google Scholar 

  18. Kita T, Yamashita T, Sasaki N et al (2014) Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc Res 102(1):107–117. doi:10.1093/cvr/cvu002

    Article  CAS  PubMed  Google Scholar 

  19. Takeda M, Yamashita T, Sasaki N et al (2010) Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol 30(12):2495–2503. doi:10.1161/ATVBAHA.110.215459

    Article  CAS  PubMed  Google Scholar 

  20. Lee YW, Kim PH, Lee WH et al (2010) Interleukin-4, oxidative stress, vascular inflammation and atherosclerosis. Biomol Ther (Seoul) 18(2):135–144. doi:10.4062/biomolther.2010.18.2.135

    Article  CAS  Google Scholar 

  21. Van Dyken SJ, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31:317–343. doi:10.1146/annurev-immunol-032712-095906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. King VL, Szilvassy SJ, Daugherty A (2002) Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol 22(3):456–461

    Article  CAS  PubMed  Google Scholar 

  23. George J, Shoenfeld Y, Gilburd B et al (2000) Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res 86(12):1203–1210

    Article  CAS  PubMed  Google Scholar 

  24. Davenport P, Tipping PG (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 163(3):1117–1125. doi:10.1016/S0002-9440(10)63471-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. King VL, Cassis LA, Daugherty A (2007) Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am J Pathol 171(6):2040–2047. doi:10.2353/ajpath.2007.060857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. George J, Mulkins M, Shaish A et al (2000) Interleukin (IL)-4 deficiency does not influence fatty streak formation in C57BL/6 mice. Atherosclerosis 153(2):403–411

    Article  CAS  PubMed  Google Scholar 

  27. Huber SA, Sakkinen P, David C et al (2001) T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103(21):2610–2616

    Article  CAS  PubMed  Google Scholar 

  28. Takatsu K (2011) Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci 87(8):463–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Miller VM, Petterson TM, Jeavons EN et al (2013) Genetic polymorphisms associated with carotid artery intima-media thickness and coronary artery calcification in women of the Kronos Early Estrogen Prevention Study. Physiol Genomics 45(2):79–88. doi:10.1152/physiolgenomics.00114.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Binder CJ, Hartvigsen K, Chang MK et al (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114(3):427–437. doi:10.1172/JCI20479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Schuett H, Luchtefeld M, Grothusen C et al (2009) How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost 102(2):215–222. doi:10.1160/TH09-05-0297

    CAS  PubMed  Google Scholar 

  32. Panesar N, Tolman K, Mazuski JE (1999) Endotoxin stimulates hepatocyte interleukin-6 production. J Surg Res 85(2):251–258. doi:10.1006/jsre.1999.5648

    Article  CAS  PubMed  Google Scholar 

  33. Lin G, Wang J, Lao X et al (2012) Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother 35(4):337–343. doi:10.1097/CJI.0b013e318255ada3

    Article  CAS  PubMed  Google Scholar 

  34. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. doi:10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  35. Huber SA, Sakkinen P, Conze D et al (1999) Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 19(10):2364–2367

    Article  CAS  PubMed  Google Scholar 

  36. Luchtefeld M, Schunkert H, Stoll M et al (2007) Signal transducer of inflammation gp130 modulates atherosclerosis in mice and man. J Exp Med 204(8):1935–1944. doi:10.1084/jem.20070120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Van Lenten BJ, Wagner AC, Navab M et al (2001) Oxidized phospholipids induce changes in hepatic paraoxonase and ApoJ but not monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 276(3):1923–1929. doi:10.1074/jbc.M004074200

    Article  PubMed  Google Scholar 

  38. Madan M, Bishayi B, Hoge M et al (2008) Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis 197(2):504–514. doi:10.1016/j.atherosclerosis.2007.02.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Schieffer B, Selle T, Hilfiker A et al (2004) Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 110(22):3493–3500. doi:10.1161/01.CIR.0000148135.08582.97

    Article  CAS  PubMed  Google Scholar 

  40. Elhage R, Clamens S, Besnard S et al (2001) Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice. Atherosclerosis 156(2):315–320

    Article  CAS  PubMed  Google Scholar 

  41. Tous M, Ribas V, Escola-Gil JC et al (2006) Manipulation of inflammation modulates hyperlipidemia in apolipoprotein E-deficient mice: a possible role for interleukin-6. Cytokine 34(3-4):224–232. doi:10.1016/j.cyto.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  42. Pestka S, Krause CD, Sarkar D et al (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979. doi:10.1146/annurev.immunol.22.012703.104622

    Article  CAS  PubMed  Google Scholar 

  43. Potteaux S, Esposito B, van Oostrom O et al (2004) Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24(8):1474–1478. doi:10.1161/01.ATV.0000134378.86443.cd

    Article  CAS  PubMed  Google Scholar 

  44. Caligiuri G, Rudling M, Ollivier V et al (2003) Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 9(1-2):10–17

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Pinderski Oslund LJ, Hedrick CC, Olvera T et al (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19(12):2847–2853

    Article  CAS  PubMed  Google Scholar 

  46. Mallat Z, Besnard S, Duriez M et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85(8):e17–e24

    Article  CAS  PubMed  Google Scholar 

  47. Sun J, Li X, Feng H et al (2011) Magnetic resonance imaging of bone marrow cell-mediated interleukin-10 gene therapy of atherosclerosis. PLoS One 6(9):e24529. doi:10.1371/journal.pone.0024529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pinderski LJ, Fischbein MP, Subbanagounder G et al (2002) Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res 90(10):1064–1071

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Li D, Chen J et al (2006) Inhibition of atherogenesis in LDLR knockout mice by systemic delivery of adeno-associated virus type 2-hIL-10. Atherosclerosis 188(1):19–27. doi:10.1016/j.atherosclerosis.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  50. Yoshioka T, Okada T, Maeda Y et al (2004) Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther 11(24):1772–1779. doi:10.1038/sj.gt.3302348

    Article  CAS  PubMed  Google Scholar 

  51. Namiki M, Kawashima S, Yamashita T et al (2004) Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice. Atherosclerosis 172(1):21–29

    Article  CAS  PubMed  Google Scholar 

  52. Cao M, Khan JA, Kang BY et al (2012) Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit. Int J Vasc Med 2012:524235. doi:10.1155/2012/524235

    PubMed Central  PubMed  Google Scholar 

  53. Hauer AD, Uyttenhove C, de Vos P et al (2005) Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 112(7):1054–1062. doi:10.1161/CIRCULATIONAHA.104.533463

    Article  CAS  PubMed  Google Scholar 

  54. Hsieh CS, Macatonia SE, Tripp CS et al (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549

    Article  CAS  PubMed  Google Scholar 

  55. Manetti R, Parronchi P, Giudizi MG et al (1993) Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177(4):1199–1204

    Article  CAS  PubMed  Google Scholar 

  56. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146. doi:10.1038/nri1001

    Article  CAS  PubMed  Google Scholar 

  57. Munder M, Mallo M, Eichmann K et al (1998) Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187(12):2103–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lee TS, Yen HC, Pan CC et al (1999) The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19(3):734–742

    Article  CAS  PubMed  Google Scholar 

  59. Cardilo-Reis L, Gruber S, Schreier SM et al (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4(10):1072–1086. doi:10.1002/emmm.201201374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Oliphant CJ, Barlow JL, McKenzie AN (2011) Insights into the initiation of type 2 immune responses. Immunology 134(4):378–385. doi:10.1111/j.1365-2567.2011.03499.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kuperman DA, Schleimer RP (2008) Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med 8(5):384–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Chomarat P, Banchereau J (1998) Interleukin-4 and interleukin-13: their similarities and discrepancies. Int Rev Immunol 17(1-4):1–52

    Article  CAS  PubMed  Google Scholar 

  63. Fichtner-Feigl S, Strober W, Kawakami K et al (2006) IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12(1):99–106. doi:10.1038/nm1332

    Article  CAS  PubMed  Google Scholar 

  64. Ghoreschi K, Laurence A, Yang XP et al (2011) T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol 32(9):395–401. doi:10.1016/j.it.2011.06.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467. doi:10.1016/j.immuni.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Liuzzo G, Trotta F, Pedicino D (2013) Interleukin-17 in atherosclerosis and cardiovascular disease: the good, the bad, and the unknown. Eur Heart J 34(8):556–559. doi:10.1093/eurheartj/ehs399

    Article  PubMed  Google Scholar 

  67. Danzaki K, Matsui Y, Ikesue M et al (2012) Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 32(2):273–280. doi:10.1161/ATVBAHA.111.229997

    Article  CAS  PubMed  Google Scholar 

  68. Ge S, Hertel B, Koltsova EK et al (2013) Increased atherosclerotic lesion formation and vascular leukocyte accumulation in renal impairment are mediated by interleukin-17A. Circ Res 113(8):965–974. doi:10.1161/CIRCRESAHA.113.301934

    Article  CAS  PubMed  Google Scholar 

  69. Usui F, Kimura H, Ohshiro T et al (2012) Interleukin-17 deficiency reduced vascular inflammation and development of atherosclerosis in Western diet-induced apoE-deficient mice. Biochem Biophys Res Commun 420(1):72–77. doi:10.1016/j.bbrc.2012.02.117

    Article  CAS  PubMed  Google Scholar 

  70. Butcher MJ, Gjurich BN, Phillips T et al (2012) The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ Res 110(5):675–687. doi:10.1161/CIRCRESAHA.111.261784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Chen S, Shimada K, Zhang W et al (2010) IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol 185(9):5619–5627. doi:10.4049/jimmunol.1001879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Cheng X, Taleb S, Wang J et al (2011) Inhibition of IL-17A in atherosclerosis. Atherosclerosis 215(2):471–474. doi:10.1016/j.atherosclerosis.2010.12.034

    Article  CAS  PubMed  Google Scholar 

  73. Madhur MS, Funt SA, Li L et al (2011) Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 31(7):1565–1572. doi:10.1161/ATVBAHA.111.227629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Gao Q, Jiang Y, Ma T et al (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185(10):5820–5827. doi:10.4049/jimmunol.1000116

    Article  CAS  PubMed  Google Scholar 

  75. Erbel C, Chen L, Bea F et al (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183(12):8167–8175. doi:10.4049/jimmunol.0901126

    Article  CAS  PubMed  Google Scholar 

  76. Smith E, Prasad KM, Butcher M et al (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121(15):1746–1755. doi:10.1161/CIRCULATIONAHA.109.924886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. van Es T, van Puijvelde GH, Ramos OH et al (2009) Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 388(2):261–265. doi:10.1016/j.bbrc.2009.07.152

    Article  PubMed  CAS  Google Scholar 

  78. Taleb S, Romain M, Ramkhelawon B et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206(10):2067–2077. doi:10.1084/jem.20090545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Imai T, Oikawa Y, Shimada A et al (2011) Proatherogenic effect of interleukin-18 is exerted with high-fat diet, but not with normal diet in spontaneously hyperlipidemic mice. J Atheroscler Thromb 18(12):1090–1101

    Article  CAS  PubMed  Google Scholar 

  80. Tenger C, Sundborger A, Jawien J et al (2005) IL-18 accelerates atherosclerosis accompanied by elevation of IFN-gamma and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol 25(4):791–796. doi:10.1161/01.ATV.0000153516.02782.65

    Article  CAS  PubMed  Google Scholar 

  81. Elhage R, Jawien J, Rudling M et al (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59(1):234–240

    Article  CAS  PubMed  Google Scholar 

  82. Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 90(2):E34–E38

    Article  CAS  PubMed  Google Scholar 

  83. Pei C, Barbour M, Fairlie-Clarke KJ et al (2014) Emerging role of interleukin-33 in autoimmune diseases. Immunology 141(1):9–17. doi:10.1111/imm.12174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kurowska-Stolarska M, Kewin P, Murphy G et al (2008) IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J Immunol 181(7):4780–4790

    Article  CAS  PubMed  Google Scholar 

  85. Stolarski B, Kurowska-Stolarska M, Kewin P et al (2010) IL-33 exacerbates eosinophil-mediated airway inflammation. J Immunol 185(6):3472–3480. doi:10.4049/jimmunol.1000730

    Article  CAS  PubMed  Google Scholar 

  86. Miller AM, Xu D, Asquith DL et al (2008) IL-33 reduces the development of atherosclerosis. J Exp Med 205(2):339–346. doi:10.1084/jem.20071868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hulthe J (2004) Antibodies to oxidized LDL in atherosclerosis development – clinical and animal studies. Clin Chim Acta 348(1-2):1–8. doi:10.1016/j.cccn.2004.05.021

    Article  CAS  PubMed  Google Scholar 

  88. Kleemann R, Zadelaar S, Kooistra T (2008) Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 79(3):360–376. doi:10.1093/cvr/cvn120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Canault M, Peiretti F, Mueller C et al (2004) Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Atherosclerosis 172(2):211–218. doi:10.1016/j.atherosclerosis.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  90. Canault M, Peiretti F, Poggi M et al (2008) Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. J Pathol 214(5):574–583. doi:10.1002/path.2305

    Article  CAS  PubMed  Google Scholar 

  91. Branen L, Hovgaard L, Nitulescu M et al (2004) Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24(11):2137–2142. doi:10.1161/01.ATV.0000143933.20616.1b

    Article  CAS  PubMed  Google Scholar 

  92. Xiao N, Yin M, Zhang L et al (2009) Tumor necrosis factor-alpha deficiency retards early fatty-streak lesion by influencing the expression of inflammatory factors in apoE-null mice. Mol Genet Metab 96(4):239–244. doi:10.1016/j.ymgme.2008.11.166

    Article  CAS  PubMed  Google Scholar 

  93. Ohta H, Wada H, Niwa T et al (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180(1):11–17. doi:10.1016/j.atherosclerosis.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  94. Boesten LS, Zadelaar AS, van Nieuwkoop A et al (2005) Tumor necrosis factor-alpha promotes atherosclerotic lesion progression in APOE*3-Leiden transgenic mice. Cardiovasc Res 66(1):179–185. doi:10.1016/j.cardiores.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  95. Kober F, Canault M, Peiretti F et al (2007) MRI follow-up of TNF-dependent differential progression of atherosclerotic wall-thickening in mouse aortic arch from early to advanced stages. Atherosclerosis 195(2):e93–e99. doi:10.1016/j.atherosclerosis.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  96. Schreyer SA, Vick CM, LeBoeuf RC (2002) Loss of lymphotoxin-alpha but not tumor necrosis factor-alpha reduces atherosclerosis in mice. J Biol Chem 277(14):12364–12368. doi:10.1074/jbc.M111727200

    Article  CAS  PubMed  Google Scholar 

  97. Schreyer SA, Peschon JJ, LeBoeuf RC (1996) Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 271(42):26174–26178

    Article  CAS  PubMed  Google Scholar 

  98. Xanthoulea S, Gijbels MJ, van der Made I et al (2008) P55 tumour necrosis factor receptor in bone marrow-derived cells promotes atherosclerosis development in low-density lipoprotein receptor knock-out mice. Cardiovasc Res 80(2):309–318. doi:10.1093/cvr/cvn193

    Article  CAS  PubMed  Google Scholar 

  99. Xanthoulea S, Thelen M, Pottgens C et al (2009) Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One 4(7):e6113. doi:10.1371/journal.pone.0006113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Zhang L, Peppel K, Sivashanmugam P et al (2007) Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 27(5):1087–1094. doi:10.1161/ATVBAHA.0000261548.49790.63

    Article  PubMed Central  PubMed  Google Scholar 

  101. Blessing E, Bea F, Kuo CC et al (2004) Lesion progression and plaque composition are not altered in older apoE−/− mice lacking tumor necrosis factor-alpha receptor p55. Atherosclerosis 176(2):227–232. doi:10.1016/j.atherosclerosis.2004.05.033

    Article  CAS  PubMed  Google Scholar 

  102. Harvey EJ, Ramji DP (2005) Interferon-gamma and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 67(1):11–20. doi:10.1016/j.cardiores.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  103. Muhl H, Pfeilschifter J (2003) Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int Immunopharmacol 3(9):1247–1255. doi:10.1016/S1567-5769(03)00131-0

    Article  CAS  PubMed  Google Scholar 

  104. McLaren JE, Ramji DP (2009) Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 20(2):125–135. doi:10.1016/j.cytogfr.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  105. Buono C, Come CE, Stavrakis G et al (2003) Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 23(3):454–460. doi:10.1161/01.ATV.0000059419.11002.6E

    Article  CAS  PubMed  Google Scholar 

  106. Whitman SC, Ravisankar P, Daugherty A (2002) IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E−/− mice. J Interferon Cytokine Res 22(6):661–670. doi:10.1089/10799900260100141

    Article  CAS  PubMed  Google Scholar 

  107. Koga M, Kai H, Yasukawa H et al (2007) Postnatal blocking of interferon-gamma function prevented atherosclerotic plaque formation in apolipoprotein E-knockout mice. Hypertens Res 30(3):259–267. doi:10.1291/hypres.30.259

    Article  CAS  PubMed  Google Scholar 

  108. King VL, Lin AY, Kristo F et al (2009) Interferon-gamma and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation 119(3):426–435. doi:10.1161/CIRCULATIONAHA.108.785949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Koga M, Kai H, Yasukawa H et al (2007) Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res 101(4):348–356. doi:10.1161/CIRCRESAHA.106.147256

    Article  CAS  PubMed  Google Scholar 

  110. Gupta S, Pablo AM, Jiang X et al (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99(11):2752–2761. doi:10.1172/JCI119465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Goossens P, Gijbels MJ, Zernecke A et al (2010) Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab 12(2):142–153. doi:10.1016/j.cmet.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  112. Yarilina A, Park-Min KH, Antoniv T et al (2008) TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 9(4):378–387. doi:10.1038/ni1576

    Article  CAS  PubMed  Google Scholar 

  113. Zhang LN, Velichko S, Vincelette J et al (2008) Interferon-beta attenuates angiotensin II-accelerated atherosclerosis and vascular remodeling in apolipoprotein E deficient mice. Atherosclerosis 197(1):204–211. doi:10.1016/j.atherosclerosis.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  114. Pardali E, Ten Dijke P (2012) TGFbeta signaling and cardiovascular diseases. Int J Biol Sci 8(2):195–213. doi:10.7150/ijbs.3805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Grainger DJ (2004) Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 24(3):399–404. doi:10.1161/01.ATV.0000114567.76772.33

    Article  CAS  PubMed  Google Scholar 

  116. Mallat Z, Gojova A, Marchiol-Fournigault C et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89(10):930–934

    Article  CAS  PubMed  Google Scholar 

  117. Lutgens E, Gijbels M, Smook M et al (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22(6):975–982

    Article  CAS  PubMed  Google Scholar 

  118. Tang T, Wilson PG, Thompson JC et al (2013) Prevention of TGFbeta induction attenuates angII-stimulated vascular biglycan and atherosclerosis in Ldlr−/− mice. J Lipid Res 54(8):2255–2264. doi:10.1194/jlr.P040139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Robertson AK, Rudling M, Zhou X et al (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112(9):1342–1350. doi:10.1172/JCI18607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Gojova A, Brun V, Esposito B et al (2003) Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102(12):4052–4058. doi:10.1182/blood-2003-05-1729

    Article  CAS  PubMed  Google Scholar 

  121. Lievens D, Habets KL, Robertson AK et al (2013) Abrogated transforming growth factor beta receptor II (TGFbetaRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J 34(48):3717–3727. doi:10.1093/eurheartj/ehs106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Otsuka G, Agah R, Frutkin AD et al (2006) Transforming growth factor beta 1 induces neointima formation through plasminogen activator inhibitor-1-dependent pathways. Arterioscler Thromb Vasc Biol 26(4):737–743. doi:10.1161/01.ATV.0000201087.23877.e1

    Article  CAS  PubMed  Google Scholar 

  123. Li D, Liu Y, Chen J et al (2006) Suppression of atherogenesis by delivery of TGFbeta1ACT using adeno-associated virus type 2 in LDLR knockout mice. Biochem Biophys Res Commun 344(3):701–707. doi:10.1016/j.bbrc.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  124. Frutkin AD, Otsuka G, Stempien-Otero A et al (2009) TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 29(9):1251–1257. doi:10.1161/ATVBAHA.109.186593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Reifenberg K, Cheng F, Orning C et al (2012) Overexpression of TGF-ss1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS One 7(7):e40990. doi:10.1371/journal.pone.0040990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Buday A, Orsy P, Godo M et al (2010) Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(−/−) mice. Am J Physiol Heart Circ Physiol 299(2):H386–H395. doi:10.1152/ajpheart.01042.2009

    Article  CAS  PubMed  Google Scholar 

  127. Wan W, Murphy PM (2013) Regulation of atherogenesis by chemokines and chemokine receptors. Arch Immunol Ther Exp (Warsz) 61(1):1–14. doi:10.1007/s00005-012-0202-1

    Article  CAS  Google Scholar 

  128. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86(2):192–201. doi:10.1093/cvr/cvp391

    Article  CAS  PubMed  Google Scholar 

  129. Yu X, Dluz S, Graves DT et al (1992) Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci U S A 89(15):6953–6957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Han KH, Tangirala RK, Green SR et al (1998) Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol 18(12):1983–1991

    Article  CAS  PubMed  Google Scholar 

  131. Nelken NA, Coughlin SR, Gordon D et al (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88(4):1121–1127. doi:10.1172/JCI115411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Rayner K, Van Eersel S, Groot PH et al (2000) Localisation of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vasc Res 37(2):93–102. doi:10.1159/000025720

    Article  CAS  PubMed  Google Scholar 

  133. Combadiere C, Potteaux S, Rodero M et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13):1649–1657. doi:10.1161/CIRCULATIONAHA.107.745091

    Article  CAS  PubMed  Google Scholar 

  134. Gosling J, Slaymaker S, Gu L et al (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103(6):773–778. doi:10.1172/JCI5624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Rull A, Beltran-Debon R, Aragones G et al (2010) Expression of cytokine genes in the aorta is altered by the deficiency in MCP-1: effect of a high-fat, high-cholesterol diet. Cytokine 50(2):121–128. doi:10.1016/j.cyto.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  136. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2(2):275–281

    Article  CAS  PubMed  Google Scholar 

  137. Ni W, Egashira K, Kitamoto S et al (2001) New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103(16):2096–2101

    Article  CAS  PubMed  Google Scholar 

  138. Inoue S, Egashira K, Ni W et al (2002) Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106(21):2700–2706

    Article  CAS  PubMed  Google Scholar 

  139. de Waard V, Bot I, de Jager SC et al (2010) Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently. Atherosclerosis 211(1):84–89. doi:10.1016/j.atherosclerosis.2010.01.042

    Article  PubMed  CAS  Google Scholar 

  140. Ni W, Kitamoto S, Ishibashi M et al (2004) Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24(3):534–539. doi:10.1161/01.ATV.0000118275.60121.2b

    Article  CAS  PubMed  Google Scholar 

  141. Schepers A, Eefting D, Bonta PI et al (2006) Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler Thromb Vasc Biol 26(9):2063–2069. doi:10.1161/01.ATV.0000235694.69719.e2

    Article  CAS  PubMed  Google Scholar 

  142. Aiello RJ, Bourassa PA, Lindsey S et al (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19(6):1518–1525

    Article  CAS  PubMed  Google Scholar 

  143. Ohman MK, Wright AP, Wickenheiser KJ et al (2010) Monocyte chemoattractant protein-1 deficiency protects against visceral fat-induced atherosclerosis. Arterioscler Thromb Vasc Biol 30(6):1151–1158. doi:10.1161/ATVBAHA.110.205914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Liu XL, Zhang PF, Ding SF et al (2012) Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice. PLoS One 7(3):e33497. doi:10.1371/journal.pone.0033497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Meisner JK, Song J, Price RJ (2012) Arteriolar and venular remodeling are differentially regulated by bone marrow-derived cell-specific CX3CR1 and CCR2 expression. PLoS One 7(9):e46312. doi:10.1371/journal.pone.0046312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Martinez HG, Quinones MP, Jimenez F et al (2011) Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe−/− mouse model of the metabolic syndrome. Diabetologia 54(10):2660–2668. doi:10.1007/s00125-011-2248-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Boring L, Gosling J, Cleary M et al (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394(6696):894–897. doi:10.1038/29788

    Article  CAS  PubMed  Google Scholar 

  148. Dawson TC, Kuziel WA, Osahar TA et al (1999) Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143(1):205–211

    Article  CAS  PubMed  Google Scholar 

  149. Saederup N, Chan L, Lira SA et al (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117(13):1642–1648. doi:10.1161/CIRCULATIONAHA.107.743872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Guo J, Van Eck M, Twisk J et al (2003) Transplantation of monocyte CC-chemokine receptor 2-deficient bone marrow into ApoE3-Leiden mice inhibits atherogenesis. Arterioscler Thromb Vasc Biol 23(3):447–453. doi:10.1161/01.ATV.0000058431.78833.F5

    Article  CAS  PubMed  Google Scholar 

  151. Ishibashi M, Egashira K, Zhao Q et al (2004) Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24(11):e174–e178. doi:10.1161/01.ATV.0000143384.69170.2d

    Article  CAS  PubMed  Google Scholar 

  152. Okamoto M, Fuchigami M, Suzuki T et al (2012) A novel C-C chemokine receptor 2 antagonist prevents progression of albuminuria and atherosclerosis in mouse models. Biol Pharm Bull 35(11):2069–2074

    Article  CAS  PubMed  Google Scholar 

  153. Olzinski AR, Turner GH, Bernard RE et al (2010) Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E−/− mouse: magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol 30(2):253–259. doi:10.1161/ATVBAHA.109.198812

    Article  CAS  PubMed  Google Scholar 

  154. Guo J, Van Eck M, de Waard V et al (2005) The presence of leukocyte CC-chemokine receptor 2 in CCR2 knockout mice promotes atherogenesis. Biochim Biophys Acta 1740(3):453–459. doi:10.1016/j.bbadis.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  155. Pattison JM, Nelson PJ, Huie P et al (1996) RANTES chemokine expression in transplant-associated accelerated atherosclerosis. J Heart Lung Transplant 15(12):1194–1199

    CAS  PubMed  Google Scholar 

  156. Krohn R, Raffetseder U, Bot I et al (2007) Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation 116(16):1812–1820. doi:10.1161/CIRCULATIONAHA.107.708016

    Article  CAS  PubMed  Google Scholar 

  157. Quinones MP, Martinez HG, Jimenez F et al (2007) CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis 195(1):e92–e103. doi:10.1016/j.atherosclerosis.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  158. Braunersreuther V, Zernecke A, Arnaud C et al (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27(2):373–379. doi:10.1161/01.ATV.0000253886.44609.ae

    Article  CAS  PubMed  Google Scholar 

  159. Zernecke A, Liehn EA, Gao JL et al (2006) Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood 107(11):4240–4243. doi:10.1182/blood-2005-09-3922

    Article  CAS  PubMed  Google Scholar 

  160. Cipriani S, Francisci D, Mencarelli A et al (2013) Efficacy of the CCR5 antagonist maraviroc in reducing early, ritonavir-induced atherogenesis and advanced plaque progression in mice. Circulation 127(21):2114–2124. doi:10.1161/CIRCULATIONAHA.113.001278

    Article  CAS  PubMed  Google Scholar 

  161. Veillard NR, Kwak B, Pelli G et al (2004) Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 94(2):253–261. doi:10.1161/01.RES.0000109793.17591.4E

    Article  CAS  PubMed  Google Scholar 

  162. Braunersreuther V, Steffens S, Arnaud C et al (2008) A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 28(6):1090–1096. doi:10.1161/ATVBAHA.108.165423

    Article  CAS  PubMed  Google Scholar 

  163. Arnaud C, Beguin PC, Lantuejoul S et al (2011) The inflammatory preatherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition. Am J Respir Crit Care Med 184(6):724–731. doi:10.1164/rccm.201012-2033OC

    Article  CAS  PubMed  Google Scholar 

  164. Major TC, Olszewski B, Rosebury-Smith WS (2009) A CCR2/CCR5 antagonist attenuates an increase in angiotensin II-induced CD11b+ monocytes from atherogenic ApoE−/− mice. Cardiovasc Drugs Ther 23(2):113–120. doi:10.1007/s10557-008-6157-0

    Article  CAS  PubMed  Google Scholar 

  165. Pan JH, Sukhova GK, Yang JT et al (2004) Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 109(25):3149–3153. doi:10.1161/01.CIR.0000134704.84454.D2

    Article  CAS  PubMed  Google Scholar 

  166. Verschuren L, Kooistra T, Bernhagen J et al (2009) MIF deficiency reduces chronic inflammation in white adipose tissue and impairs the development of insulin resistance, glucose intolerance, and associated atherosclerotic disease. Circ Res 105(1):99–107. doi:10.1161/CIRCRESAHA.109.199166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Burger-Kentischer A, Gobel H, Kleemann R et al (2006) Reduction of the aortic inflammatory response in spontaneous atherosclerosis by blockade of macrophage migration inhibitory factor (MIF). Atherosclerosis 184(1):28–38. doi:10.1016/j.atherosclerosis.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  168. Schober A, Bernhagen J, Thiele M et al (2004) Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice. Circulation 109(3):380–385. doi:10.1161/01.CIR.0000109201.72441.09

    Article  CAS  PubMed  Google Scholar 

  169. Chen Z, Sakuma M, Zago AC et al (2004) Evidence for a role of macrophage migration inhibitory factor in vascular disease. Arterioscler Thromb Vasc Biol 24(4):709–714. doi:10.1161/01.ATV.0000119356.35748.9e

    Article  CAS  PubMed  Google Scholar 

  170. Teupser D, Pavlides S, Tan M et al (2004) Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A 101(51):17795–17800. doi:10.1073/pnas.0408096101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Veillard NR, Steffens S, Pelli G et al (2005) Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112(6):870–878. doi:10.1161/CIRCULATIONAHA.104.520718

    Article  CAS  PubMed  Google Scholar 

  172. van Wanrooij EJ, de Jager SC, van Es T et al (2008) CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28(2):251–257. doi:10.1161/ATVBAHA.107.147827

    Article  PubMed  CAS  Google Scholar 

  173. van Wanrooij EJ, Happe H, Hauer AD et al (2005) HIV entry inhibitor TAK-779 attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25(12):2642–2647. doi:10.1161/01.ATV.0000192018.90021.c0

    Article  PubMed  CAS  Google Scholar 

  174. Sachais BS, Turrentine T, Dawicki McKenna JM et al (2007) Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE−/− mice. Thromb Haemost 98(5):1108–1113

    CAS  PubMed  Google Scholar 

  175. Koenen RR, von Hundelshausen P, Nesmelova IV et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15(1):97–103. doi:10.1038/nm.1898

    Article  CAS  PubMed  Google Scholar 

  176. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111(3):333–340. doi:10.1172/JCI15555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Liu P, Yu YR, Spencer JA et al (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28(2):243–250. doi:10.1161/ATVBAHA.107.158675

    Article  CAS  PubMed  Google Scholar 

  178. Combadiere C, Potteaux S, Gao JL et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016

    Article  CAS  PubMed  Google Scholar 

  179. Landsman L, Bar-On L, Zernecke A et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113(4):963–972. doi:10.1182/blood-2008-07-170787

    Article  CAS  PubMed  Google Scholar 

  180. Poupel L, Boissonnas A, Hermand P et al (2013) Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice. Arterioscler Thromb Vasc Biol 33(10):2297–2305. doi:10.1161/ATVBAHA.112.300930

    Article  CAS  PubMed  Google Scholar 

  181. Bernhagen J, Krohn R, Lue H et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596. doi:10.1038/nm1567

    Article  CAS  PubMed  Google Scholar 

  182. Chamberlain J, Evans D, King A et al (2006) Interleukin-1beta and signaling of interleukin-1 in vascular wall and circulating cells modulates the extent of neointima formation in mice. Am J Pathol 168(4):1396–1403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Shemesh S, Kamari Y, Shaish A et al (2012) Interleukin-1 receptor type-1 in non-hematopoietic cells is the target for the pro-atherogenic effects of interleukin-1 in apoE-deficient mice. Atherosclerosis 222(2):329–336. doi:10.1016/j.atherosclerosis.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  184. Chamberlain J, Francis S, Brookes Z et al (2009) Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding. PLoS One 4(4):e5073. doi:10.1371/journal.pone.0005073

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Alexander MR, Moehle CW, Johnson JL et al (2012) Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 122(1):70–79. doi:10.1172/JCI43713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Chi H, Messas E, Levine RA et al (2004) Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 110(12):1678–1685. doi:10.1161/01.CIR.0000142085.39015.31

    Article  CAS  PubMed  Google Scholar 

  187. Devlin CM, Kuriakose G, Hirsch E et al (2002) Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A 99(9):6280–6285. doi:10.1073/pnas.092324399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Isoda K, Shiigai M, Ishigami N et al (2003) Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108(5):516–518. doi:10.1161/01.CIR.0000085567.18648.21

    Article  CAS  PubMed  Google Scholar 

  189. Isoda K, Sawada S, Ishigami N et al (2004) Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 24(6):1068–1073. doi:10.1161/01.ATV.0000127025.48140.a3

    Article  CAS  PubMed  Google Scholar 

  190. Merhi-Soussi F, Kwak BR, Magne D et al (2005) Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res 66(3):583–593. doi:10.1016/j.cardiores.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  191. Elhage R, Maret A, Pieraggi MT et al (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 97(3):242–244

    Article  CAS  PubMed  Google Scholar 

  192. Song L, Schindler C (2004) IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis 177(1):43–51. doi:10.1016/j.atherosclerosis.2004.06.018

    Article  CAS  PubMed  Google Scholar 

  193. Zhang K, Huang XZ, Li XN et al (2012) Interleukin 6 destabilizes atherosclerotic plaques by downregulating prolyl-4-hydroxylase alpha1 via a mitogen-activated protein kinase and c-Jun pathway. Arch Biochem Biophys 528(2):127–133. doi:10.1016/j.abb.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  194. Schuett H, Oestreich R, Waetzig GH et al (2012) Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32(2):281–290. doi:10.1161/ATVBAHA.111.229435

    Article  CAS  PubMed  Google Scholar 

  195. Pejnovic N, Vratimos A, Lee SH et al (2009) Increased atherosclerotic lesions and Th17 in interleukin-18 deficient apolipoprotein E-knockout mice fed high-fat diet. Mol Immunol 47(1):37–45. doi:10.1016/j.molimm.2008.12.032

    Article  CAS  PubMed  Google Scholar 

  196. Mallat Z, Corbaz A, Scoazec A et al (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89(7):E41–E45

    Article  CAS  PubMed  Google Scholar 

  197. Campbell LA, Nosaka T, Rosenfeld ME et al (2005) Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice. Infect Immun 73(5):3164–3165. doi:10.1128/IAI.73.5.3164-3165.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Whitman SC, Ravisankar P, Elam H et al (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am J Pathol 157(6):1819–1824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Thacker SG, Zhao W, Smith CK et al (2012) Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheum 64(9):2975–2985. doi:10.1002/art.34504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Gistera A, Robertson AK, Andersson J et al (2013) Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med 5(196):196ra100. doi:10.1126/scitranslmed.3006133

    Article  PubMed  CAS  Google Scholar 

  201. Hirase T, Hara H, Miyazaki Y et al (2013) Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol 305(3):H420–H429. doi:10.1152/ajpheart.00198.2013

    Article  CAS  PubMed  Google Scholar 

  202. Koltsova EK, Kim G, Lloyd KM et al (2012) Interleukin-27 receptor limits atherosclerosis in Ldlr−/− mice. Circ Res 111(10):1274–1285. doi:10.1161/CIRCRESAHA.112.277525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Ellison S, Gabunia K, Kelemen SE et al (2013) Attenuation of experimental atherosclerosis by interleukin-19. Arterioscler Thromb Vasc Biol 33(10):2316–2324. doi:10.1161/ATVBAHA.113.301521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Lutgens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kusters, P.J.H., Lutgens, E. (2015). Cytokines and Immune Responses in Murine Atherosclerosis. In: Andrés, V., Dorado, B. (eds) Methods in Mouse Atherosclerosis. Methods in Molecular Biology, vol 1339. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2929-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2929-0_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2928-3

  • Online ISBN: 978-1-4939-2929-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics