Skip to main content

Cell Synchronization Techniques to Study the Action of CDK Inhibitors

  • Protocol
Cyclin-Dependent Kinase (CDK) Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1336))

Abstract

Cell synchronization techniques have been used for the studies of mechanisms involved in cell cycle regulation. Synchronization involves the enrichment of subpopulations of cells in specific stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cell cycle such as DNA synthesis, gene expression, protein synthesis, protein phosphorylation, protein degradation, and development of new drugs (e.g., CDK inhibitors). Here, we describe several protocols for synchronization of cells from different phases of the cell cycle. We also describe protocols for determining cell viability and mitotic index and for validating the synchrony of the cells by flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DO (2007) The cell cycle: principles of control, Primers in biology. New Science Press Ltd in association with Oxford University Press, London

    Google Scholar 

  2. Banfalvi G (2011) Overview of cell synchronization. Methods Mol Biol 761:1–23

    Article  CAS  PubMed  Google Scholar 

  3. Rosner M, Schipany K, Hengstschlager M (2013) Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 8(3):602–626

    Article  PubMed  Google Scholar 

  4. Campisi J, Morreo G, Pardee AB (1984) Kinetics of G1 transit following brief starvation for serum factors. Exp Cell Res 152(2):459–466

    Article  CAS  PubMed  Google Scholar 

  5. Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2(4):315–319

    Article  CAS  PubMed  Google Scholar 

  6. Farras R, Baldin V, Gallach S, Acquaviva C, Bossis G, Jariel-Encontre I, Piechaczyk M (2008) JunB breakdown in mid-/late G2 is required for down-regulation of cyclin A2 levels and proper mitosis. Mol Cell Biol 28(12):4173–4187. MCB.01620-07 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Stein GS, Borun TW (1972) The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. J Cell Biol 52(2):292–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol Biol 296:157–166

    CAS  PubMed  Google Scholar 

  9. Heintz N, Sive HL, Roeder RG (1983) Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol Cell Biol 3(4):539–550

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58(5):833–846, 0092-8674(89)90936-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Kohn KW, Jackman J, O’Connor PM (1994) Cell cycle control and cancer chemotherapy. J Cell Biochem 54(4):440–452

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Benavente B, Garcia JL, Rodriguez MS, Pineda-Lucena A, Piechaczyk M, Font de Mora J, Farras R (2013) GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene 32(17):2189–2199

    Article  CAS  PubMed  Google Scholar 

  13. Ferrero M, Ferragud J, Orlando L, Valero L, Sanchez del Pino M, Farras R, Font de Mora J (2011) Phosphorylation of AIB1 at mitosis is regulated by CDK1/CYCLIN B. PLoS One 6(12), e28602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21(10):3445–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Elvin P, Evans CW (1983) Cell adhesiveness and the cell cycle: correlation in synchronized Balb/c 3T3 cells. Biol Cell 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Farràs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pérez-Benavente, B., Farràs, R. (2016). Cell Synchronization Techniques to Study the Action of CDK Inhibitors. In: Orzáez, M., Sancho Medina, M., Pérez-Payá, E. (eds) Cyclin-Dependent Kinase (CDK) Inhibitors. Methods in Molecular Biology, vol 1336. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2926-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2926-9_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2925-2

  • Online ISBN: 978-1-4939-2926-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics