Skip to main content

Approaches to Assess Functional Selectivity in GPCRs: Evaluating G Protein Signaling in an Endogenous Environment

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

Ligand-directed signaling, biased agonism, and functional selectivity are terms that describe the propensity of a ligand to drive signaling toward one GPCR pathway over another. Most of the early examples demonstrated to date examine the divergence between GPCR signaling to G protein coupling and βarrestin2 recruitment. As biased agonists begin to become available based on cell-based screening criteria, a need arises to determine if G protein signaling biases will be maintained in the endogenous setting, wherein receptors are functioning to control relevant biological responses. This report presents our method and offers tips for evaluating G protein signaling in endogenous tissues. Predominately, brain tissues are discussed here; optimization points that can be applied to any tissues are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wisler J, Xiao K, Thomsen A, Lefkowitz R (2014) Recent developments in biased agonism. Curr Opin Cell Biol 27:18

    Article  CAS  PubMed  Google Scholar 

  3. Zhou L, Lovell KM, Frankowski KJ, Slauson SR, Phillips AM, Streicher JM, Stahl E, Schmid CL, Hodder P, Madoux F (2013) Development of functionally selective, small molecule agonists at kappa opioid receptors. J Biol Chem 288:36703–36716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci 109:6733–6738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rivero G, Llorente J, McPherson J, Cooke A, Mundell SJ, McArdle CA, Rosethorne EM, Charlton SJ, Krasel C, Bailey CP (2012) Endomorphin-2: a biased agonist at the μ-opioid receptor. Mol Pharmacol 82:178–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hurowitz EH, Melnyk JM, Chen Y-J, Kouros-Mehr H, Simon MI, Shizuya H (2000) Genomic characterization of the human heterotrimeric G protein α, β, and γ subunit genes. DNA Res 7:111–120

    Article  CAS  PubMed  Google Scholar 

  7. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ (2013) Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 182:209–218

    Article  CAS  PubMed  Google Scholar 

  8. Schmid CL, Streicher JM, Groer CE, Munro TA, Zhou L, Bohn LM (2013) Functional selectivity of 6′-guanidinonaltrindole (6′-GNTI) at κ-opioid receptors in striatal neurons. J Biol Chem 288:22387–22398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin F-T (1999) Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286:2495–2498

    Article  CAS  PubMed  Google Scholar 

  10. Dennis I, Whalley BJ, Stephens GJ (2008) Effects of Δ9‐tetrahydrocannabivarin on [35S] GTPγS binding in mouse brain cerebellum and piriform cortex membranes. Br J Pharmacol 154:1349–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hungund B, Vinod K, Kassir S, Basavarajappa B, Yalamanchili R, Cooper T, Mann J, Arango V (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190

    Article  CAS  PubMed  Google Scholar 

  12. Jin LQ, Wang HY, Friedman E (2001) Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem 78:981–990

    Article  CAS  PubMed  Google Scholar 

  13. Márki Á, Monory K, Ötvös F, Tóth G, Krassnig R, Schmidhammer H, Traynor JR, Roques BP, Maldonado R, Borsodi A (1999) μ-Opioid receptor specific antagonist cyprodime: characterization by in vitro radioligand and [35S] GTPγS binding assays. Eur J Pharmacol 383:209–214

    Article  PubMed  Google Scholar 

  14. Panchalingam S, Undie AS (2000) Optimized binding of [35S] GTPγS to Gq-like proteins stimulated with dopamine D1-like receptor agonists. Neurochem Res 25:759–767

    Article  CAS  PubMed  Google Scholar 

  15. Szekeres PG, Traynor JR (1997) Delta opioid modulation of the binding of guanosine-5′-O-(3-[35S] thio) triphosphate to NG108–15 cell membranes: characterization of agonist and inverse agonist effects. J Pharmacol Exp Ther 283:1276–1284

    CAS  PubMed  Google Scholar 

  16. Odagaki Y, Toyoshima R (2006) Dopamine D 2 receptor-mediated G protein activation assessed by agonist-stimulated [35S] guanosine 5′-O-(γ-thiotriphosphate) binding in rat striatal membranes. Prog Neuro-Psychopharmacol Biol Psychiatr 30:1304–1312

    Article  CAS  Google Scholar 

  17. Wang Y, Tang K, Inan S, Siebert D, Holzgrabe U, Lee DY, Huang P, Li J-G, Cowan A, Liu-Chen L-Y (2005) Comparison of pharmacological activities of three distinct κ ligands (salvinorin A, TRK-820 and 3FLB) on κ opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo. J Pharmacol Exp Ther 312:220–230

    Article  CAS  PubMed  Google Scholar 

  18. Savinainen JR, Järvinen T, Laine K, Laitinen JT (2001) Despite substantial degradation, 2‐arachidonoylglycerol is a potent full efficacy agonist mediating CB1 receptor‐dependent G‐protein activation in rat cerebellar membranes. Br J Pharmacol 134:664–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sim-Selley L, Daunais J, Porrino L, Childers S (1999) Mu and kappa 1 opioid-stimulated [35S] guanylyl-5′-O-(γ-THIO)-triphosphate binding in cynomolgus monkey brain. Neuroscience 94:651–662

    Article  CAS  PubMed  Google Scholar 

  20. Rinken A, Finnman U-B, Fuxe K (1999) Pharmacological characterization of dopamine-stimulated [35S]-guanosine 5′-(γ-thiotriphosphate)([35S] GTPγS) binding in rat striatal membranes. Biochem Pharmacol 57:155–162

    Article  CAS  PubMed  Google Scholar 

  21. Albrecht E, Samovilova NN, Oswald S, Baeger I, Berger H (1998) Nociceptin (orphanin FQ): high-affinity and high-capacity binding site coupled to low-potency stimulation of guanylyl-5′-O-(γ-thio)-triphosphate binding in rat brain membranes. J Pharmacol Exp Ther 286:896–902

    CAS  PubMed  Google Scholar 

  22. Zhu J, Luo L-Y, Li J-G, Chen C, Liu-Chen L-Y (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S] GTPγS binding to membranes: determination of potencies and efficacies of ligands. J Pharmacol Exp Ther 282:676–684

    CAS  PubMed  Google Scholar 

  23. Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR (1997) μ-Opioid receptor-stimulated guanosine-5′-O-(γ-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy. Mol Pharmacol 51:87–96

    CAS  PubMed  Google Scholar 

  24. Traynor JR, Nahorski SR (1995) Modulation by mu-opioid agonists of guanosine-5′-O-(3-[35S] thio) triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol Pharmacol 47:848–854

    CAS  PubMed  Google Scholar 

  25. Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S] thio]-triphosphate binding. Proc Natl Acad Sci 92:7242–7246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    Article  CAS  PubMed  Google Scholar 

  27. Hinton DR, Blanks JC, Fong H, Casey PJ, Hildebrandt E, Simons MI (1990) Novel localization of a G protein, Gz-alpha, in neurons of brain and retina. J Neurosci 10:2763–2770

    CAS  PubMed  Google Scholar 

  28. Matesic D, Manning D, Wolfe B, Luthin G (1989) Pharmacological and biochemical characterization of complexes of muscarinic acetylcholine receptor and guanine nucleotide-binding protein. J Biol Chem 264:21638–21645

    CAS  PubMed  Google Scholar 

  29. Law SF, Manning D, Reisine T (1991) Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. J Biol Chem 266:17885–17897

    CAS  PubMed  Google Scholar 

  30. Law S, Reisine T (1992) Agonist binding to rat brain somatostatin receptors alters the interaction of the receptors with guanine nucleotide-binding regulatory proteins. Mol Pharmacol 42:398–402

    CAS  PubMed  Google Scholar 

  31. Chalecka‐Franaszek E, Weems HB, Crowder AT, Cox BM, Côté TE (2000) Immunoprecipitation of high‐affinity, guanine nucleotide‐sensitive, solubilized μ‐opioid receptors from rat brain. J Neurochem 74:1068–1078

    Article  PubMed  Google Scholar 

  32. Sidhu A, Kimura K, Uh M, White BH, Patel S (1998) Multiple coupling of human D5 dopamine receptors to guanine nucleotide binding proteins Gs and Gz. J Neurochem 70:2459–2467

    Article  CAS  PubMed  Google Scholar 

  33. Georgoussi Z, Milligan G, Zioudrou C (1995) Immunoprecipitation of opioid receptor-Go-protein complexes using specific GTP-binding-protein antisera. Biochem J 306:71–75

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

NIH/NIDA grants DA0031927, DA033073, DA009158 fund G protein signaling projects in our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Bohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bohn, L.M., Zhou, L., Ho, JH. (2015). Approaches to Assess Functional Selectivity in GPCRs: Evaluating G Protein Signaling in an Endogenous Environment. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics