Skip to main content

Purification of Stabilized GPCRs for Structural and Biophysical Analyses

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

G protein-coupled receptors (GPCRs) are of particular importance for drug discovery, being the targets of many existing drugs, and being linked to many diseases where new therapies are required. However, as integral membrane proteins, they are generally unstable when removed from their membrane environment, precluding them from the wide range of structural and biophysical techniques which can be applied to soluble proteins such as kinases. Through the use of protein engineering methods, mutations can be identified which both increase the thermostability of GPCRs when purified in detergent, as well as biasing the receptor toward a specific physiologically relevant conformational state. The resultant stabilized receptor (known as a StaR) can be purified in multiple-milligram quantities, whilst retaining correct folding, thus enabling the generation of reagents suitable for a broad range of structural and biophysical studies. Example protocols for the purification of StaR proteins for analysis, ligand screening with the thiol-specific fluorochrome N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM), surface plasmon resonance (SPR), and crystallization for structural studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  2. Robertson N, Jazayeri A, Errey J, Baig A, Hurrell E, Zhukov A, Langmead CJ, Weir M, Marshall FH (2011) The properties of stabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60:36–44

    Article  CAS  PubMed  Google Scholar 

  3. Bennett KA, Tehan B, Lebon G, Tate CG, Weir MP, Marshall FH, Langmead CJ (2013) Pharmacology and structure of isolated conformations of the adenosine A2A receptor define ligand efficacy. Mol Pharmacol 83:949–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Christopher JA, Brown J, DorĂ© AS, Errey JC, Koglin M, Marshall FH, Myszka DG, Rich RL, Tate CG, Tehan B, Warne T, Congreve M (2013) Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem 56:3446–3455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55:1898–1903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir MP, Marshall FH (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hutchings CJ, Cseke G, Osborne G, Woolard J, Zhukov A, Koglin M, Jazayeri A, Pandya-Pathak J, Langmead CJ, Hill S, Weir M, Marshall FH (2014) Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. MAbs 6:246–261

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A, Cooke RM, Weir MP, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443

    Article  CAS  PubMed  Google Scholar 

  12. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B, Weir M, Wiggin G, Marshall FH (2014) Structure of the class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562

    Article  PubMed  Google Scholar 

  13. Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 3:351–359

    Article  Google Scholar 

  14. Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  CAS  PubMed  Google Scholar 

  15. Navratilova I, Dioszegi M, Myszka DG (2006) Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal Biochem 355:132–139

    Article  CAS  PubMed  Google Scholar 

  16. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I (2013) Discovery of β2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med Chem Lett 4:1005–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rich RL, Errey J, Marshall F, Myszka DG (2011) Biacore analysis with stabilized GPCRs. Anal Biochem 409:267–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhukov A, Andrews SP, Errey JC, Robertson N, Tehan B, Mason JS, Marshall FH, Weir M, Congreve M (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54:4312–4323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Misquitta LV, Misquitta Y, Cherezov V, Slattery O, Mohan JM, Hart D, Zhalnina M, Cramer WA, Caffrey M (2004) Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure 12:2113–21124

    Article  CAS  PubMed  Google Scholar 

  21. Cherezov V, Liu J, Griffith M, Hanson MA, Stevens RC (2008) LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst Growth Des 8:4307–4315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Engstrom S, Alfons K, Rasmusson M, Ljusberg-Wahren H (1998) Solvent-induced sponge (l3) phases in the solvent-monoolein-water system. Prog Coll Pol Sci S 108:93–98

    Google Scholar 

  23. Ridell A, Ekelund K, Evertsson H, Engstrom S (2003) On the water content of the solvent/monoolein/water sponge (L3) phase. Colloid Surface A 228:17–24

    Article  CAS  Google Scholar 

  24. Wadsten P, Wöhri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engström S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53

    Article  CAS  PubMed  Google Scholar 

  25. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Cooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Errey, J.C., Doré, A.S., Zhukov, A., Marshall, F.H., Cooke, R.M. (2015). Purification of Stabilized GPCRs for Structural and Biophysical Analyses. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics