Skip to main content

Vaccination Using Gene-Gun Technology

  • Protocol
Malaria Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1325))

Abstract

DNA vaccines against infection with Plasmodium have been highly successful in rodent models of malaria and have shown promise in the very limited number of clinical trials conducted so far. The vaccine platform is highly attractive for numerous reasons, such as low cost and a very favorable safety profile. Gene gun delivery of DNA plasmids drastically reduces the vaccine dose and does not only have the potential to make vaccines more accessible and affordable, but also simplifies (a) the testing of novel antigens as vaccine candidates, (b) the testing of antigen combinations, and (c) the co-delivery of antigens with molecular adjuvants such as cytokines or costimulatory molecules. Described in this chapter are the preparation of the inoculum (i.e., DNA plasmids attached to gold particles, coating to the inside of plastic tubing also referred to as gene gun “bullets” or cartridges), the gene gun vaccination procedure, and the challenge of mice with Plasmodium berghei parasites to test the efficacy of the experimental vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnelly JJ et al (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  CAS  PubMed  Google Scholar 

  2. Kopycinski J et al (2012) A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the alpha4beta7-binding V2 loop of HIV gp120 in healthy volunteers. Clin Vaccine Immunol 19(9):1557–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ferraro B et al (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53(3):296–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ledgerwood JE et al (2012) Influenza virus h5 DNA vaccination is immunogenic by intramuscular and intradermal routes in humans. Clin Vaccine Immunol 19(11):1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vardas E et al (2012) Indicators of therapeutic effect in FIT-06, a Phase II trial of a DNA vaccine, GTU((R))-Multi-HIVB, in untreated HIV-1 infected subjects. Vaccine 30(27):4046–4054

    Article  CAS  PubMed  Google Scholar 

  6. Koup RA et al (2010) Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One 5(2), e9015

    Article  PubMed Central  PubMed  Google Scholar 

  7. Diaz CM et al (2013) Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 11:62

    Article  PubMed Central  PubMed  Google Scholar 

  8. Leitner WW et al (1997) Immune responses induced by intramuscular or gene gun injection of protective deoxyribonucleic acid vaccines that express the circumsporozoite protein from Plasmodium berghei malaria parasites. J Immunol 159(12):6112–6119

    CAS  PubMed  Google Scholar 

  9. Sedegah M et al (1994) Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci U S A 91(21):9866–9870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kumar R et al (2013) Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons. Vaccine 31(31):3140–3147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ferraro B et al (2013) Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immun 81(10):3709–3720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Walsh DS et al (2006) Heterologous prime-boost immunization in rhesus macaques by two, optimally spaced particle-mediated epidermal deliveries of Plasmodium falciparum circumsporozoite protein-encoding DNA, followed by intramuscular RTS,S/AS02A. Vaccine 24(19):4167–4178

    Article  CAS  PubMed  Google Scholar 

  13. Richie TL et al (2012) Clinical trial in healthy malaria-naive adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 8(11):1564–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chuang I et al (2013) DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PLoS One 8(2), e55571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bergmann-Leitner ES, Leitner WW (2013) Improving DNA vaccines against malaria: could immunization by gene gun be the answer? Ther Deliv 4(7):767–770

    Article  CAS  PubMed  Google Scholar 

  16. Ledgerwood JE et al (2013) Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 208(3):418–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bergmann-Leitner ES, Leitner WW (2013) Gene gun immunization to combat malaria. Methods Mol Biol 940:269–284

    CAS  PubMed  Google Scholar 

  18. Leitner WW et al (2009) Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood 113(1):37–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Loudon PT et al (2010) GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PLoS One 5(6), e11021

    Article  PubMed Central  PubMed  Google Scholar 

  20. Leitner WW et al (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9(1):33–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ozaki LS, Gwadz RW, Godson GN (1984) Simple centrifugation method for rapid separation of sporozoites from mosquitoes. J Parasitol 70(5):831–833

    Article  CAS  PubMed  Google Scholar 

  22. Mairhofer J, Lara AR (2014) Advances in host and vector development for the production of plasmid DNA vaccines. Methods Mol Biol 1139:505–541

    Article  CAS  PubMed  Google Scholar 

  23. Leitner WW et al (2000) Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res 60(1):51–55

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Bergmann-Leitner ES et al (2005) C3d binding to the circumsporozoite protein carboxy-terminus deviates immunity against malaria. Int Immunol 17(3):245–255

    Article  CAS  PubMed  Google Scholar 

  25. Bergmann-Leitner ES et al (2011) Cellular and humoral immune effector mechanisms required for sterile protection against sporozoite challenge induced with the novel malaria vaccine candidate CelTOS. Vaccine 29(35):5940–5949

    Article  CAS  PubMed  Google Scholar 

  26. Scheiblhofer S et al (2001) Removal of the circumsporozoite protein (CSP) glycosylphosphatidylinositol signal sequence from a CSP DNA vaccine enhances induction of CSP-specific Th2 type immune responses and improves protection against malaria infection. Eur J Immunol 31(3):692–698

    Article  CAS  PubMed  Google Scholar 

  27. Bergmann-Leitner ES et al (2009) Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis. Vaccine 27(41):5700–5708

    Article  CAS  PubMed  Google Scholar 

  28. Leitner WW, Restifo NP (2003) DNA vaccines and apoptosis: to kill or not to kill? J Clin Invest 112(1):22–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Smith TG et al (2002) Innate immunity to malaria caused by Plasmodium falciparum. Clin Invest Med 25(6):262–272

    CAS  PubMed  Google Scholar 

  30. Bergmann-Leitner ES et al (2007) C3d-defined complement receptor-binding peptide p28 conjugated to circumsporozoite protein provides protection against Plasmodium berghei. Vaccine 25(45):7732–7736

    Article  CAS  PubMed  Google Scholar 

  31. Leitner WW, Bergmann-Leitner ES, Angov E (2010) Comparison of Plasmodium berghei challenge models for the evaluation of pre-erythrocytic malaria vaccines and their effect on perceived vaccine efficacy. Malar J 9:145

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclaimer

The opinions or assertions contained herein are the private views of the authors, and are not to be construed as official, or as reflecting true views of the Department of the Army, the Department of Defense, or the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke S. Bergmann-Leitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bergmann-Leitner, E.S., Leitner, W.W. (2015). Vaccination Using Gene-Gun Technology. In: Vaughan, A. (eds) Malaria Vaccines. Methods in Molecular Biology, vol 1325. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2815-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2815-6_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2814-9

  • Online ISBN: 978-1-4939-2815-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics