Skip to main content

Aerosol Dosimetry Modeling Using Computational Fluid Dynamics

  • Protocol
Computational Systems Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

In this chapter, the current state of the art in modeling and prediction of aerosol deposition in respiratory systems using computational fluid dynamics (CFD) is presented and reviewed. First, the physical and chemical processes governing aerosol transport, evolution, and deposition are described followed by their coupling via fundamental conservation laws. The different ways to numerically model aerosol dynamics are then described and a brief overview of the different methods that can be used to obtain a realistic geometry, computational mesh, and simulation conditions of the respiratory system is given. A short review of available numerical algorithms to solve the systems of strongly coupled partial differential equations is also presented followed by a brief discussion of the importance of proper model verification and validation. To complete the path between the inhaled aerosol and the toxicological effects, attempts to couple deterministic CFD-based aerosol deposition modeling with biological effects via physiologically based pharmacokinetic (PBPK) models are described. Finally, conclusions and the current general trends in the application of CFD to toxicological science are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinds HC (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons Inc., New York, 2nd edition

    Google Scholar 

  2. Kreyling WG, Hirn S, Schleh C (2010) Nanoparticles in the lung. Nat Biotechnol 28(12):1275–1276

    Article  CAS  PubMed  Google Scholar 

  3. Rostami AA (2009) Computational modeling of aerosol deposition in respiratory tract: a review. Inhal Toxicol 21:262–290

    Article  CAS  PubMed  Google Scholar 

  4. Darquenne C (2012) Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv 25(3):140–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jaques PA, Kim CS (2000) Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 12:715–731

    Article  CAS  PubMed  Google Scholar 

  6. Kim CS, Hu SC (2006) Total respiratory tract deposition of fine micrometer-sized particles in healthy adults: empirical equations for sex and breathing pattern. J Appl Physiol 101:401–412

    Article  PubMed  Google Scholar 

  7. Kim CS (2009) Deposition of aerosol particles in human lungs: in vivo measurement and modelling. Biomarkers 14(S1):54–58

    Article  CAS  PubMed  Google Scholar 

  8. Kim CS, Hu SC (1998) Regional deposition of inhaled particles in human lungs: comparison between men and women. J Appl Physiol 84:1834–1844

    Article  CAS  PubMed  Google Scholar 

  9. Kim CS, Jaques PA (2000) Respiratory dose of inhaled ultrafine particles in healthy humans. Phil Trans R Soc A 358:2693–2701

    Article  CAS  Google Scholar 

  10. Stahlhofen W, Rudolf G, James A (1989) Intercomparison of experimental regional aerosol deposition data. J Aerosol Med Pulm Drug Deliv 2:285–308

    Google Scholar 

  11. Mendez LB, Gookin G, Phalen RF (2010) Inhaled aerosol particle dosimetry in mice: a review. Inhal Toxicol 22(12):1032–1037

    Article  CAS  PubMed  Google Scholar 

  12. Kuehl PJ et al (2012) Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhal Toxicol 24(1):27–35

    Article  CAS  PubMed  Google Scholar 

  13. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7(2)

    Google Scholar 

  14. Cheng Y-S, Zhou Y, Chen BT (1999) Particle deposition in a cast of human oral airways. Aerosol Sci Tech 31:286–300

    Article  CAS  Google Scholar 

  15. Phalen RF et al (1997) Deposition of fluorescent particles in replica casts of distal human airways: comparison of theory with experiment. Ann Occup Hyg 41(1):565–570

    Article  Google Scholar 

  16. Sosnowski TR, Moskal A, Gradon L (2006) Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal Toxicol 18:773–780

    Article  CAS  PubMed  Google Scholar 

  17. Sosnowski TR, Moskal A, Gradon L (2007) Mechanisms of aerosol particle deposition in oro-pharynx under non-steady airflow. Ann Occup Hyg 51(1):19–25

    Article  CAS  PubMed  Google Scholar 

  18. Robinson RJ et al (2006) Experimental and numerical smoke deposition in a multi-generation human replica tracheobronchial model. Ann Biomed Eng 34(3):373–383

    Article  PubMed  Google Scholar 

  19. Tippe A, Heinzmann U, Roth C (2002) Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. J Aerosol Sci 33(2):207–218

    Article  CAS  Google Scholar 

  20. Comouth A et al (2013) Modelling and measurement of particle deposition for cell exposure at the air-liquid interface. J Aerosol Sci 63:103–114

    Article  CAS  Google Scholar 

  21. Paur H-R et al (2011) In vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung – a dialog between aerosol science and biology. J Aerosol Sci 42(10):668–692

    Article  CAS  Google Scholar 

  22. Hofmann W (2009) Modelling particle deposition in human lungs: modelling concepts and comparison with experimental data. Biomarkers 14(S1):59–62

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann W (2011) Modelling inhaled particle deposition in the human lung – a review. J Aerosol Sci 42:693–724

    Article  CAS  Google Scholar 

  24. Longest PW, Holbrook LT (2012) In silico models of aerosol delivery to the respiratory tract – development and applications. Adv Drug Deliv Rev 64:296–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Phalen RF, Mendez LB, Oldham MJ (2010) New developments in aerosol dosimetry. Inhal Toxicol 22(S2):6–14

    Article  CAS  PubMed  Google Scholar 

  26. Schroeter JD et al (2014) Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages. Toxicol Sci 138(2):412–424

    Article  CAS  PubMed  Google Scholar 

  27. Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech 42:301–334

    Article  Google Scholar 

  28. Li A, Ahmadi G (1995) Computer simulation of particle deposition in the upper tracheobronchial tree. Aerosol Sci Tech 23:201–223

    Article  CAS  Google Scholar 

  29. Li Z, Kleinstreuer C, Zhang Z (2007) Particle deposition in human tracheobronchial airways due to transient inspiratory flow patterns. J Aerosol Sci 38:626–644

    Google Scholar 

  30. Longest PW, Xi J (2008) Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci Tech 42(8):579–602

    Article  CAS  Google Scholar 

  31. Svenningsson B et al (2006) Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorfanic and organic compounds of atmospheric relevance. Atmos Chem Phys 6:1937–1952

    Article  CAS  Google Scholar 

  32. Millage KK et al (2010) A review of inhalability fraction models: discussion and recommendations. Inhal Toxicol 22(2):151–159

    Article  CAS  PubMed  Google Scholar 

  33. Asgharian B et al (2012) A lung dosimetry model of vapor uptake and tissue disposition. Inhal Toxicol 24(3):182–193

    Article  CAS  PubMed  Google Scholar 

  34. Hofmann W et al (2009) Deposition of combustion aerosols in the human respiratory tract: comparison of theoretical predictions with experimental data considering nonspherical shape. Inhal Toxicol 21(14):1154–1164

    Article  CAS  PubMed  Google Scholar 

  35. Asgharian B et al (2011) Derivation of mass transfer coefficients for transient uptake and tissue disposition of soluble and reactive vapors in lung airways. Ann Biomed Eng 39(6):1788–1804

    Article  CAS  PubMed  Google Scholar 

  36. Bird RB, Stewart WE, Lightfoot EN (2007) Transport Phenomena. John Wiley & Sons Inc., New York, revised second edition

    Google Scholar 

  37. Zhao B et al (2008) Particle dispersion and deposition in ventilated rooms: testing and evaluation of different Eulerian and Lagrangian models. Build Environ 43:388–397

    Article  Google Scholar 

  38. Elghobashi S (1991) Particle-laden turbulent flows: direct simulation and closure models. Appl Sci Res 48(3-4):301–314

    Article  Google Scholar 

  39. Kleinstreuer C, Feng Y (2013) Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. Int J Env Res Public Health 10:4454–4485

    Article  CAS  Google Scholar 

  40. Zhao B et al (2004) Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Build Environ 36:1–8

    Article  CAS  Google Scholar 

  41. Beghein C, Jiang Y, Chen Q (2005) Using large eddy simulation to study particle motions in a room. Indoor Air 15:281–290

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Chen Q (2006) Experimental measurements and numerical simulation of fine particle transport and distribution in ventilated rooms. Atmos Environ 40:3396–3408

    Article  CAS  Google Scholar 

  43. Hofmann W, Balashazy I (1991) Particle deposition within airway bifurcation – solution of 3D Navier-Stokes equation. Radiat Prot Dosim 38:57–63

    CAS  Google Scholar 

  44. Balashazy I, Hofmann W (1995) Deposition of aerosols in asymmetric airway bifurcations. J Aerosol Sci 26:273–292

    Article  CAS  Google Scholar 

  45. Weibel ER (1963) Morphometry of the human lung. Springer Verlag and Academic Press, Heidelberg

    Book  Google Scholar 

  46. van Ertbruggen C, Hirsch C, Paiva M (2005) Anatomically based three dimensional model airways to simulate flow and particle transport using computational fluid dynamics. J Appl Physiol 98:970–980

    Article  PubMed  Google Scholar 

  47. Longest PW, Xi J (2007) Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Tech 41(4):380–397

    Article  CAS  Google Scholar 

  48. Longest PW, Xi J (2007) Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Aerosol Sci Tech 38(1):111–130

    Article  CAS  Google Scholar 

  49. Frederix EMA et al (2015) Extension of the compressible PISO algorithm to single-species aerosol formation and transport. Int J Multiphase Flow (In Press). Available online: doi: 10.1016/j.ijmultiphaseflow.2015.04.015

  50. Broday DM (2004) Deposition of ultrafine particles at carinal ridges of the upper bronchial airways. Aerosol Sci Tech 38:991–1000

    Article  CAS  Google Scholar 

  51. Shi H et al (2004) Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys Fluids 16(7):2199–2213

    Article  CAS  Google Scholar 

  52. Zhang Z, Kleinstreuer C (2004) Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys 198(1):178–210

    Article  Google Scholar 

  53. Longest PW, Oldham MJ (2008) Numerical and experimental deposition of fine respirators aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J Aerosol Sci 39:48–70

    Article  CAS  Google Scholar 

  54. Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. VTT Publications 288, Technical Research Center of Finland

    Google Scholar 

  55. Murakami S et al (1992) Diffusion characteristics of airborne particles with gravitational settling in a convection dominant indoor flow field. ASHRAE Trans 98:82–97

    Google Scholar 

  56. Shimada M et al (1996) Numerical simulation and experiment on the transport of fine particles in a ventilated room. Aerosol Sci Tech 25:242–255

    Article  CAS  Google Scholar 

  57. Holmberg S, Li Y (1998) Modelling of the indoor environment-particle dispersion and deposition. Indoor Air 8:113–122

    Article  Google Scholar 

  58. Holmberg S, Chen Q (2003) Air flow and particle control with different ventilation systems in a classroom. Indoor Air 13:200–204

    Article  CAS  PubMed  Google Scholar 

  59. Zhao B, Wu J (2005) Numerical study of particle deposition in two different ventilated rooms. Indoor Built Environ 14:469–479

    Article  CAS  Google Scholar 

  60. Chen F, Yu SCM, Lai ACK (2006) Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmos Environ 40:357–367

    Article  CAS  Google Scholar 

  61. Chen F, Lai ACK (2004) An Eulerian model for particle deposition under electrostatic and turbulent conditions. J Aerosol Sci 35:47–62

    Article  CAS  Google Scholar 

  62. Wang JB, Lai ACK (2006) A new drift-flux model for particle transport and deposition in human airways. J Biomech Eng 128:97–105

    Article  CAS  PubMed  Google Scholar 

  63. Xi J, Longest PW (2008) Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transfer 51(23–24):5562–5577

    Article  Google Scholar 

  64. Sanyal J et al (1999) Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chem Eng J 54:5071–5083

    Article  CAS  Google Scholar 

  65. Moser RD, Moin P (1987) The effects of curvature in wall-bounded turbulent flows. J Fluid Mech 175:479–510

    Article  CAS  Google Scholar 

  66. Longest PW, Vinchurkar S (2007) Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med Eng Phys 29:350–366

    Article  PubMed  Google Scholar 

  67. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  68. Tsinober A (2009) An informal conceptual introduction to turbulence: second edition of an informal introduction to turbulence. Springer, Dordrecht

    Book  Google Scholar 

  69. Deissler RG (1998) Turbulent fluid motion. Taylor & Francis, Philadelphia, PA

    Google Scholar 

  70. Geurts BJ (2003) Elements of direct and large-eddy simulation. R.T. Edwards, Inc., Philadelphia, PA

    Google Scholar 

  71. Germano M et al (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A3:1760–1765

    Article  Google Scholar 

  72. Peng S-H, Haase W (eds) (2008) Advances in hybrid RANS-LES modelling. Papers contributed to the 2007 symposium of hybrid RANS-LES methods, Corfu, Greece, 17–18 June 2007. Springer, Berlin

    Google Scholar 

  73. Spalart PR et al (1998) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. Greyden Press, Dayton, OH

    Google Scholar 

  74. Katz IM, Davis BM, Martonen TB (1999) A numerical study of particle motion within the human larynx and trachea. J Aerosol Sci 30(2):173–183

    Article  CAS  Google Scholar 

  75. Stapleton KW et al (2000) On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci 31:739–749

    Article  CAS  Google Scholar 

  76. Zhang Z, Kleinstreuer C (2003) Low-Reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA J 41(5):831–840

    Article  Google Scholar 

  77. Matida EA et al (2004) Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci 35:1–19

    Article  CAS  Google Scholar 

  78. Mylavarapu G et al (2009) Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J Biomech 42(10):1553–1559

    Article  PubMed  Google Scholar 

  79. Luo XY et al (2004) LES modelling of flow in a simple airway model. Med Eng Phys 26:403–413

    Article  CAS  PubMed  Google Scholar 

  80. Matida EA et al (2006) Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J Aerosol Med Pulm Drug Deliv 19(3):290–300

    CAS  Google Scholar 

  81. Jayaraju ST, Verbanck S, Lacor C (2010) LES and DES study of fluid-particle dynamics in a human mouth-throat geometry, turbulence and interactions. Notes Number Fluid Mech Multidiscip Des 110:183–189

    Article  Google Scholar 

  82. Talukdar SS, Swihart MT (2004) Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparisin of three solution methods. J Aerosol Sci 35:889–908

    Article  CAS  Google Scholar 

  83. Gelbard F, Tambour Y, Seinfeld JH (1980) Sectional representations for simulating aerosol dynamics. J Colloid Interface Sci 76(2):541–556

    Article  CAS  Google Scholar 

  84. Gelbard F, Seinfeld JH (1980) Simulation of multicomponent aerosol dynamics. J Colloid Interface Sci 78(2):485–501

    Article  CAS  Google Scholar 

  85. Gelbard F (1990) Modeling multicomponent aerosol-particle growth by vapor condensation. Aerosol Sci Tech 12(2):399–412

    Article  CAS  Google Scholar 

  86. Jacobson MZ (1997) Development and application of a new air pollution modeling system 3. Aerosol-phase simulations. Atmos Environ 31(4):587–608

    Article  CAS  Google Scholar 

  87. Jacobson MZ (1997) Development and application of a new air pollution modeling system 2. Aerosol module structure and design. Atmos Environ 31(2):131–144

    Article  CAS  Google Scholar 

  88. Zhang Y et al (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes. Atmos Environ 34(1):117–137

    Article  CAS  Google Scholar 

  89. Sun Z, Axelbaum RL, Huertas JI (2004) Monte Carlo simulation of multicomponent aerosols undergoing simultaneous coagulation and condensation. Aerosol Sci Tech 38(10):963–971

    Article  CAS  Google Scholar 

  90. Whitby ER, McMurry PH (1997) Modal aerosol dynamics modeling. Aerosol Sci Tech 27(6):673–688

    Article  CAS  Google Scholar 

  91. Seigneur C et al (1986) Simulation of aerosol dynamics – a comparative review of mathematical-models. Aerosol Sci Tech 5(2):205–222

    Article  CAS  Google Scholar 

  92. Binkowski FS, Shankar U (1995) The regional particulate matter model 1. Model description and preliminary results. J Geohys Res D 100(D12):26191–26209

    Article  Google Scholar 

  93. Horsfield K, Cumming G (1968) Morphology of bronchial tree in man. J Appl Physiol 24(3):373–383

    CAS  PubMed  Google Scholar 

  94. Koblinger L, Hafmann W (1985) Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol 30:541–556

    Article  CAS  PubMed  Google Scholar 

  95. Kitaoka H, Takaki R, Suki B (1999) A three dimensional model for human airway tree. J Appl Physiol 76(6):2207–2217

    Google Scholar 

  96. Clinkenbeard RE et al (2002) Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique. AIHA J 63:141–150

    Article  Google Scholar 

  97. Sauret V et al (2002) Study of three dimensional geometry of central conducting airways in man using computed tomographic (CT) images. J Anat 200:123–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. McRobbie DW, Pritchard S, Quest RA (2003) Studies of the human oropharyngeal airspaces using magnetic resonance imaging. J Aerosol Med Pulm Drug Deliv 16(4):401–415

    Google Scholar 

  99. Jayaraju ST et al (2007) Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. J Aerosol Sci 38:494–508

    Article  CAS  Google Scholar 

  100. Ahmed A et al (2012) Development of an in vitro model to assess deposition of aerosol particles in a representative replica of the rat's respiratory tract. J Aerosol Med Pulm Drug Deliv 25(3):169–178

    Article  CAS  PubMed  Google Scholar 

  101. Lizal F et al (2012) Development of a realistic human airway model. Proc Inst Mech Eng H J Eng Med 35:84–92

    Google Scholar 

  102. Corley RA et al (2012) Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol Sci 128(2):500–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Zhang Z, Kleinstreuer C, Kim CS (2002) Aerosol transport and deposition in a triple bifurcation bronchial airway model. J Aerosol Sci 33:257–281

    Article  CAS  Google Scholar 

  104. Tsuda A, Henry FS, Butler JP (1995) Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. J Appl Physiol 79(3):1055–1063

    CAS  PubMed  Google Scholar 

  105. Ferziger JH, Peric M (2001) Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin, 2nd edition

    Google Scholar 

  106. European Research Community on Flow, Turbulence and Combustion. Special Interest Group on Quality and Trust in Industrial CFD, Casey M, Wintergerste T (2000) Best practice guidelines. ERCOFTAC

    Google Scholar 

  107. Pauling BE, Prausnitz JM, O'Connell JP (2001) The properties of gases and liquids. McGraw-Hill, New York, NY

    Google Scholar 

  108. Jedelsky J, Lizal F, Jicha M (2012) Characteristics of turbulent particle transport in human airways under steady and cyclic flows. Int J Heat Fluid Flow 35:84–92

    Article  Google Scholar 

  109. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15(10):1787–1806

    Article  Google Scholar 

  110. Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65

    Article  Google Scholar 

  111. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Taylor & Francis Group, New York, NY

    Google Scholar 

  112. Van Doormal JP, Raithby GD (1980) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer 7(2):147–163

    Google Scholar 

  113. Issa R et al (1991) Solution of the implicitly discretised reacting flow equations by operator-splitting. J Comput Phys 93:388–410

    Article  CAS  Google Scholar 

  114. Wang DM, Watkins AP, Cant RS (1993) Three-dimensional diesel engine combustion simulation with a modified EPISO procedure. Numerical Heat Transfer A Appl 24:249–272

    Article  CAS  Google Scholar 

  115. Issa R, Gosman A, Watkins A (1986) The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J Comput Phys 62:66–82

    Article  Google Scholar 

  116. Bressloff N (2001) A parallel pressure implicit splitting of operators algorithm applied to flows at all speeds. Int J Numer Meth Fluids 36:497–518

    Article  Google Scholar 

  117. Barton IE (1998) Comparison of SIMPLE- and PISO-type algorithms for transient flows. Int J Numer Meth Fluids 26:459–483

    Article  CAS  Google Scholar 

  118. Wanik A, Schnell U (1989) Some remarks on the PISO and SIMPLE algorithms for steady turbulent flow problems. Comput Fluids 17:555–570

    Article  CAS  Google Scholar 

  119. Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, New York, NY

    Book  Google Scholar 

  120. Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160

    Article  Google Scholar 

  121. Pilou M et al (2011) Inertial particle deposition in a 90° laminar flow bend: An Eulerian fluid particle approach. Aerosol Sci Tech 45(11):1376–1387

    Article  CAS  Google Scholar 

  122. Zhang Z, Kleinstreuer C, Kim CS (2002) Micro-particle transport and deposition in human oral airway model. J Aerosol Sci 33(2):1635–1652

    Article  CAS  Google Scholar 

  123. Reddy M et al (2005) Physiologically based pharmacokinetic modeling: science and applications. Wiley, New York, NY

    Book  Google Scholar 

  124. Jongeneelen FJ, Ten Berge WF (2011) A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results. Ann Occup Hyg 55(8):841–864

    Article  CAS  PubMed  Google Scholar 

  125. Jones HM, Rowland-Yeo K (2013) Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol 2(8), e63

    Article  CAS  Google Scholar 

  126. De Buck SS et al (2007) Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos 35:1766–1780

    Article  PubMed  CAS  Google Scholar 

  127. Chen Y et al (2012) Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos 33:85–98

    Article  PubMed  CAS  Google Scholar 

  128. Jones RM (2012) A new methodology for predicting human pharmacokinetics for inhaled drugs from oratracheal pharmacokinetic data in rats. Xenobiotica 42(1):75–85

    Article  CAS  PubMed  Google Scholar 

  129. Ramsey JC, Andersen ME (1984) A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 73:159–175

    Article  CAS  PubMed  Google Scholar 

  130. Andersen ME et al (1987) Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol 87:185–205

    Article  CAS  PubMed  Google Scholar 

  131. Sarangapani R, Teeguarden JG (2002) Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal Toxicol 14:789–834

    Article  CAS  PubMed  Google Scholar 

  132. Plowchalk DR, Andersen ME, DeBethizy JD (1992) A physiologically based pharmacokinetic model for nicotine disposition in the Sprague-Dawley rat. Toxicol Appl Pharmacol 116:177–188

    Article  CAS  PubMed  Google Scholar 

  133. Schroeter JD et al (2011) Analysis of manganese tracer kinetics and target tissue dosimetry in monkeys and humans with multi-route physiologically based pharmacokinetic models. Toxicol Sci 120(2):481–498

    Article  CAS  PubMed  Google Scholar 

  134. Andersen ME et al (2000) Application of a hybrid CFD-PBPK nasal dosimetry model in an inhalation risk assessment: an example with acrylic acid. Toxicol Sci 57(2):312–325

    Article  CAS  PubMed  Google Scholar 

  135. Bush ML et al (1998) A CFD-PBPK hybrid model for simulating gas and vapor uptake in the rat nose. Toxicol Appl Pharmacol 150(1):133–145

    Article  CAS  PubMed  Google Scholar 

  136. Morris JB, Hubbs AF (2009) Inhalation dosimetry of diacetyl and butyric acid, two components of butter flavoring vapors. Toxicol Sci 108(1):173–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Gloede E et al (2011) A validated hybrid computational fluid dynamics-physiologically based pharmacokinetic model for respiratory tract vapor absorption in the human and rat and its application to inhalation dosimetry of diacetyl. Toxicol Sci 123(1):231–246

    Article  CAS  PubMed  Google Scholar 

  138. Schroeter JD et al (2008) Application of physiological computational fluid dynamics model to predict interspecies nasal dosimetry of inhaled acrolein. Inhal Toxicol 20(3):227–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of our late colleague Dr. Matthias Schorp, who initiated and inspired the writing of this book chapter. The authors would also like to thank Dr. Jeffry D. Schroeter for critical review and insightful comments on the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Nordlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nordlund, M., Kuczaj, A.K. (2015). Aerosol Dosimetry Modeling Using Computational Fluid Dynamics. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics