Skip to main content

Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9

  • Protocol
CRISPR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

The readily programmable CRISPR-Cas9 system is transforming genome engineering. We and others have adapted the S. pyogenes CRISPR-Cas9 system to precisely engineer the Drosophila genome and demonstrated that these modifications are efficiently transmitted through the germline. Here we provide a detailed protocol for engineering small indels, defined deletions, and targeted insertion of exogenous DNA sequences within one month using a rapid DNA injection-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

crRNA:

CRISPR RNA

DSB:

Double-strand break

dsDNA:

Double-stranded DNA

gRNA:

Guide RNA

HDR:

Homology-directed repair

Indel:

Insertion-deletion

NHEJ:

Nonhomologous end joining

PAM:

Protospacer adjacent motif

ssDNA:

Single-stranded DNA

tracrRNA:

Trans-activating CRISPR RNA

References

  1. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228. doi:10.1016/j.celrep.2013.06.020, S2211-1247(13)00312-4 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. doi:10.1534/genetics.113.152710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196(4):961–971. doi:10.1534/genetics.113.160713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195(3):715–721. doi:10.1534/genetics.113.156737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu LP, Yang Z, Mao D, Sun L, Wu Q, Ji JY, Xi J, Mohr SE, Xu J, Perrimon N, Ni JQ (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 110(47):19012–19017. doi:10.1073/pnas.1318481110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sebo ZL, Lee HB, Peng Y, Guo Y (2013) A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 8(1)

    Google Scholar 

  7. Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195(1):289–291. doi:10.1534/genetics.113.153825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829, science.1225829 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141. doi:10.1101/gr.162339.113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592. doi:10.1093/nar/gkt714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. doi:10.1038/nbt.2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. doi:10.1038/nbt.2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. doi:10.1038/nbt.2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJ, Severinov K (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108(25):10098–10103. doi:10.1073/pnas.1104144108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ, Doudna JA (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108(25):10092–10097. doi:10.1073/pnas.1102716108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Banga SS, Boyd JB (1992) Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A 89(5):1735–1739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Beumer KJ, Trautman JK, Mukherjee K, Carroll D (2013) Donor DNA utilization during gene targeting with zinc-finger nucleases. G3 (Bethesda). doi:10.1534/g3.112.005439

  20. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8(7), e68708. doi:10.1371/journal.pone.0068708, PONE-D-13-13968 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Harrison, O’Connor-Giles, and Wildonger labs for their help in establishing CRISPR-Cas9 protocols in Drosophila, and to Dustin Rubinstein for comments on this chapter. Our work has been funded by start-up funds from the University of Wisconsin to M.M.H., J.W., and K.O.C.G. and grants from the National Institutes of Health to J.W. (R00 NS072252) and K.O.C.G. (R00 NS060985 and R01 NS078179). Plasmids and transgenic fly lines described here are available through the nonprofit distributor Addgene and the Bloomington Drosophila Stock Center, respectively. Detailed reagent information is available at http://flycrispr.molbio.wisc.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate M. O’Connor-Giles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gratz, S.J., Harrison, M.M., Wildonger, J., O’Connor-Giles, K.M. (2015). Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics