Skip to main content

Abstract

Building components are to be designed to satisfy the requirements of serviceability and safety limit states. One of the major safety requirements in building design is the provision of appropriate fire resistance to various building components. The basis for this requirement can be attributed to the fact that, when other measures of containing the fire fail, structural integrity is the last line of defense. In this chapter, the term structural member is used to refer to both load-bearing (e.g., columns, beams, slabs) and non-load-bearing (e.g., partition walls, floors) building components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.Z. Harmathy, Technical Paper No. 242, National Research Council of Canada, Ottawa (1967).

    Google Scholar 

  2. T.Z. Harmathy, Fire Safety Design and Concrete, Longman Scientific and Technical, Harlow, UK (1993).

    Google Scholar 

  3. D.A.G. Bruggeman, Physik. Zeitschr., 37, p. 906 (1936).

    Google Scholar 

  4. R.L. Hamilton and O.K. Crosser, Industrial & Engineering Chemistry Fundamentals, 7, p. 187 (1962).

    Google Scholar 

  5. J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., 1, Clarendon Press, Oxford, UK (1904).

    Google Scholar 

  6. T.Z. Harmathy, Journal of Materials, 5, p. 47 (1970).

    Google Scholar 

  7. T.Z. Harmathy, DBR Paper No. 1080, NRCC 20956, National Research Council of Canada, Ottawa (1983).

    Google Scholar 

  8. V.K.R. Kodur and M.M.S. Dwaikat, “Effect of high temperature creep on fire response of restrained steel beams”, J. of Materials and Structures, 43, 10, pp. 1327–1341 (2010)

    Article  Google Scholar 

  9. J.E. Dorn, Journal of the Mechanics and Physics of Solids, 3, p. 85 (1954).

    Google Scholar 

  10. T.Z. Harmathy, in ASTM STP422, American Society for Testing and Materials, Philadelphia (1967).

    Google Scholar 

  11. T.Z. Harmathy, “Trans. Am. Soc. Mech. Eng.,” Journal of Basic Engineering, 89, p. 496 (1967).

    Article  Google Scholar 

  12. C. Zener and J.H. Hollomon, Journal of Applied Physics, 15, p. 22 (1944).

    Google Scholar 

  13. F.H. Wittmann (ed.), Fundamental Research on Creep and Shrinkage of Concrete, Martinus Nijhoff, The Hague, Netherlands (1982).

    Google Scholar 

  14. Y. Anderberg and S. Thelandersson, Bulletin 54, Lund Institute of Technology, Lund, Sweden (1976).

    Google Scholar 

  15. U. Schneider, Fire and Materials, 1, p. 103 (1976).

    Google Scholar 

  16. T.Z. Harmathy, Journal of the American Concrete Institute, 65, 959 (1968).

    Google Scholar 

  17. 951 Thermogravimetric Analyzer (TGA), DuPont Instruments, Wilmington, DE (1977).

    Google Scholar 

  18. T.T. Lie and V.K.R. Kodur, “Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete at Elevated Temperatures,” Canadian Journal of Civil Engineering, 23, p. 4 (1996).

    Article  Google Scholar 

  19. ASTM Test Method C135 ± 86, 2007 Annual Book of ASTM Standards, 15.01, American Society for Testing and Materials, Philadelphia (2007).

    Google Scholar 

  20. T.Z. Harmathy and L.W. Allen, Journal of the American Concrete Institute, 70, p. 132 (1973).

    Google Scholar 

  21. 910 Differential Scanning Calorimeter (DSC), DuPont Instruments, Wilmington, DE (1977).

    Google Scholar 

  22. J.H. Perry (ed.), Chemical Engineers’ Handbook, 3rd ed., McGraw-Hill, New York (1950).

    Google Scholar 

  23. W. Eitel, Thermochemical Methods in Silicate Investigation, Rutgers University, New Brunswick, Canada (1952).

    Google Scholar 

  24. T.Z. Harmathy, Industrial & Engineering Chemistry Fundamentals, 8, p. 92 (1969).

    Google Scholar 

  25. D.A. DeVries, in Problems Relating to Thermal Conductivity, Bulletin de l’Institut International du Froid, Annexe 1952–1, Louvain, Belgique, p. 115 (1952).

    Google Scholar 

  26. W.D. Kingery, Introduction to Ceramics, John Wiley and Sons, New York (1960).

    Google Scholar 

  27. T.T. Lie and V.K.R. Kodur, “Thermal Properties of Fibre-Reinforced Concrete at Elevated Temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa (1995).

    Google Scholar 

  28. Thermal Conductivity Meter (TC-31), Instruction Manual, Kyoto Electronics Manufacturing Co. Ltd., Tokyo, Japan (1993).

    Google Scholar 

  29. ASCE, “Structural Fire Protection: Manual of Practice,” No. 78, American Society of Civil Engineers, New York (1993).

    Google Scholar 

  30. L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” National Institute of Standards and Technology, Gaithersburg, MD (1996).

    Google Scholar 

  31. U. Danielsen, “Marine Concrete Structures Exposed to Hydrocarbon Fires,” Report, SINTEF—The Norwegian Fire Research Institute, Trondheim, Norway (1997).

    Google Scholar 

  32. V.K.R. Kodur and M.A. Sultan, “Structural Behaviour of High Strength Concrete Columns Exposed to Fire,” Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Concrete Canada, Sherbrooke, Canada (1998).

    Google Scholar 

  33. U. Diederichs, U.M. Jumppanen, and U. Schneider, “High Temperature Properties and Spalling Behaviour of High Strength Concrete,” in Proceedings of Fourth Weimar Workshop on High Performance Concrete, HAB, Weimar, Germany (1995).

    Google Scholar 

  34. Y. Anderberg, “Spalling Phenomenon of HPC and OC,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997).

    Google Scholar 

  35. Z.P. Bazant, “Analysis of Pore Pressure, Thermal Stress and Fracture in Rapidly Heated Concrete,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997).

    Google Scholar 

  36. A.N. Noumowe, P. Clastres, G. Debicki, and J.-L. Costaz, “Thermal Stresses and Water Vapor Pressure of High Performance Concrete at High Temperature,” Proceedings, Fourth International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France (1996).

    Google Scholar 

  37. J.A. Purkiss, Fire Safety Engineering Design of Structures, Butterworth Heinemann, Bodmin, Cornwall, UK (1996).

    Google Scholar 

  38. E.L. Schaffer, “Charring Rate of Selected Woods—Transverse to Grain,” FPL 69, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI (1967).

    Google Scholar 

  39. B.F.W. Rogowski, “Charring of Timber in Fire Tests,” in Symposium No. 3 Fire and Structural Use of Timber in Buildings, HMSO, London (1969).

    Google Scholar 

  40. N. Bénichou and M.A. Sultan, “Fire Resistance of Lightweight Wood Frame Assemblies: State-of-the-Art Report,” IR 776, IRC, National Research Council of Canada, Ottawa (1999).

    Google Scholar 

  41. S. Hadvig, Charring of Wood in Building Fires—Practice, Theory, Instrumentation, Measurements, Laboratory of Heating and Air-Conditioning, Technical University of Denmark, Lyngby, Denmark (1981).

    Google Scholar 

  42. E. Mikkola, “Charring of Wood,” Report 689, Fire Technology Laboratory, Technical Research Centre of Finland, Espoo (1990).

    Google Scholar 

  43. Guide for Determining the Fire Endurance of Concrete Elements, ACI-216–89, American Concrete Institute, Detroit, MI (1989).

    Google Scholar 

  44. I.D. Bennetts, Report No. MRL/PS23/81/001, BHP Melbourne Research Laboratories, Clayton, Australia (1981).

    Google Scholar 

  45. U. Schneider (ed.), Properties of Materials at High Temperatures—Concrete, Kassel University, Kassel, Germany (1985).

    Google Scholar 

  46. Y. Anderberg (ed.), Properties of Materials at High Temperatures—Steel, Lund University, Lund, Sweden (1983).

    Google Scholar 

  47. F. Birch and H. Clark, American Journal of Science, 238, p. 542 (1940).

    Google Scholar 

  48. T.Z. Harmathy and W.W. Stanzak, in ASTM STP464, American Society for Testing and Materials, Philadelphia (1970).

    Google Scholar 

  49. Y. Anderberg, “Mechanical Properties of Reinforcing Steel at Elevated Temperatures,” Tekniska Meddelande, 36, Sweden (1978).

    Google Scholar 

  50. “European Recommendations for the Fire Safety of Steel Structures,” European Convention for Construction Steelwork, Tech. Comm. 3, Elsevier, New York (1983).

    Google Scholar 

  51. Eurocode 3, Design of steel structures, Part 1-2: General rules-structural fire design, Document CEN, European Committee for Standardization, UK (2005).

    Google Scholar 

  52. T. Twilt, “Stress-Strain Relationships of Reinforcing Structural Steel at Elevated Temperatures, Analysis of Various Options and European Proposal,” TNO-Rep. BI-91-015, TNO Build. and Constr. Res., Delft, Netherlands (1991).

    Google Scholar 

  53. K.W. Poh, “General Stress-Strain Equation,” ASCE Journal of Materials in Civil Engineering, Dec. (1997).

    Google Scholar 

  54. K.W. Poh, “Stress-Strain-Temperature Relationship for Structural Steel,” ASCE Journal of Materials in Civil Engineering, Oct. (2001).

    Google Scholar 

  55. J.T. Gerlich, P.C.R. Collier, and A.H. Buchanan, “Design of Light Steel-Framed Walls for Fire Resistance,” Fire and Materials, 20, 2 (1996).

    Article  Google Scholar 

  56. G.Q. Li, S.C. Jiang, and Y.Z. Yin, “Experimental studies on the properties of constructional steel at elevated temperatures.” J. Struct. Eng., 129, 12, pp. 1717–1721 (2003).

    Google Scholar 

  57. BS 5950, “Structural Use of Steelwork in Building,” Part 8, in Code of Practice for Fire Resistant Design, British Standards Institution, London (2003).

    Google Scholar 

  58. W. Wang, L. Bing and V.K.R. Kodur, “Effect of temperature on strength and elastic modulus of high strength steel”, in Press: ASCE Journal of Materials in Civil Engineering, pp. 1–24 (2012).

    Google Scholar 

  59. V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal and mechanical properties of steel bolts”, ASCE Journal of Materials in Civil Engineering, 24, 6, pp. 765–774 (2012).

    Article  Google Scholar 

  60. J.T. Gerlich, “Design of Loadbearing Light Steel Frame Walls for Fire Resistance,” Fire Engineering Research Report 95/3, University of Canterbury, New Zealand (1995).

    Google Scholar 

  61. P. Makelainen and K. Miller, Mechanical Properties of Cold-Formed Galvanized Sheet Steel Z32 at Elevated Temperatures, Helsinki University of Technology, Finland (1983).

    Google Scholar 

  62. F. Alfawakhiri, M.A. Sultan, and D.H. MacKinnon, “Fire Resistance of Loadbearing Steel-Stud Walls Protected with Gypsum Board: A Review,” Fire Technology, 35, 4 (1999).

    Article  Google Scholar 

  63. T.Z. Harmathy and J.E. Berndt, Journal of the American Concrete Institute, 63, p. 93 (1966).

    Google Scholar 

  64. C.R. Cruz, Journal, PCA Research and Development Laboratories, 8, p. 37 (1966).

    Google Scholar 

  65. M.S. Abrams, in ACI SP 25, American Concrete Institute, Detroit, MI (1971).

    Google Scholar 

  66. C.R. Cruz, Journal, PCA Research and Development Laboratories, 10, p. 36 (1968).

    Google Scholar 

  67. J.C. MareÂchal, in ACI SP 34, American Concrete Institute, Detroit, MI (1972).

    Google Scholar 

  68. H. Gross, Nuclear Engineering and Design, 32, p. 129 (1975).

    Google Scholar 

  69. U. Schneider, U. Diedrichs, W. Rosenberger, and R. Weiss, Sonderforschungsbereich 148, Arbeitsbericht 1978–1980, Teil II, B 3, Technical University of Braunschweig, Germany (1980).

    Google Scholar 

  70. U. Diederichs and U. Schneider, “Bond Strength at High Temperatures,” Magazine of Concrete Research, 33, 115, pp. 75–84 (1981).

    Article  Google Scholar 

  71. V.K.R. Kodur, “Fibre-Reinforced Concrete for Enhancing the Structural Fire Resistance of Columns,” ACI-SP (2000).

    Google Scholar 

  72. A. Bilodeau, V.M. Malhotra, and G.C. Hoff, “Hydrocarbon Fire Resistance of High Strength Normal Weight and Light Weight Concrete Incorporating Polypropylene Fibres,” in Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Sherbrooke, Canada (1998).

    Google Scholar 

  73. V.K.R. Kodur and T.T. Lie, “Fire Resistance of Fibre-Reinforced Concrete,” in Fibre Reinforced Concrete: Present and the Future, Canadian Society of Civil Engineers, Montreal (1997).

    Google Scholar 

  74. U.-M. Jumppanen, U. Diederichs, and K. Heinrichsmeyer, “Materials Properties of F-Concrete at High Temperatures,” VTT Research Report No. 452, Technical Research Centre of Finland, Espoo (1986).

    Google Scholar 

  75. J.A. Purkiss, “Steel Fibre-Reinforced Concrete at Elevated Temperatures,” International Journal of Cement Composites and Light Weight Concrete, 6, 3 (1984).

    Article  Google Scholar 

  76. T.T. Lie and V.K.R. Kodur, “Effect of Temperature on Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete,” IR 695, IRC, National Research Council of Canada, Ottawa (1995).

    Google Scholar 

  77. V.K.R. Kodur and R. McGrath, “Effect of Silica Fume and Confinement on Fire Performance of High Strength Concrete Columns,” Canadian Journal of Civil Engineering, p. 24 (2006).

    Google Scholar 

  78. F.P. Cheng, V.K.R. Kodur, and T.C. Wang, “Stress-Strain Curves for High Strength Concrete at Elevated Temperatures,” ASCE Journal of Materials Engineering, 16, 1, pp. 84–90 (2004).

    Article  Google Scholar 

  79. V.K.R. Kodur, T.C. Wang, and F.P. Cheng, “Predicting the Fire Resistance Behaviour of High Strength Concrete Columns,” Cements and Concrete Composites Journal, 26, 2, pp. 141–153 (2003).

    Article  Google Scholar 

  80. V.K.R. Kodur and M.A. Sultan, “Thermal Properties of High Strength Concrete at Elevated Temperatures,” CANMET-ACI-JCI International Conference, ACI SP-170, Tokushima, Japan, American Concrete Institute, Detroit, MI (1998).

    Google Scholar 

  81. V.K.R. Kodur and M.A. Sultan, “Effect of Temperature on Thermal Properties of High Strength Concrete,” ASCE Journal of Materials in Civil Engineering, 15, 8, pp. 101–108 (2003).

    Article  Google Scholar 

  82. V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal properties of different types of high strength concrete”, ASCE Journal of Materials in Civil Engineering, 23, 6, pp. 793–801 (2011).

    Article  Google Scholar 

  83. V.K.R. Kodur, “Spalling in High Strength Concrete Exposed to Fire—Concerns, Causes, Critical Parameters and Cures,” in Proceedings: ASCE Structures Congress, Philadelphia (2000).

    Google Scholar 

  84. V.K.R. Kodur, “Guidelines for Fire Resistance Design of High Strength Concrete Columns,” Journal of Fire Protection Engineering, 15, 2, pp. 93–106 (2005).

    Article  Google Scholar 

  85. J.W. McBurney and C.E. Lovewell, ASTM—Proceedings of the Thirty-Sixth Annual Meeting, Vol. 33 (II), American Society for Testing and Materials, Detroit, MI, p. 636 (1933).

    Google Scholar 

  86. Wood Handbook: Wood as an Engineering Material, Agriculture Handbook No. 72, Forest Products Laboratory, U.S. Government Printing Office, Washington, DC (1974).

    Google Scholar 

  87. C.C. Gerhards, Wood & Fiber, 14, p. 4 (1981).

    Google Scholar 

  88. E.L. Schaffer, Wood & Fiber, 9, p. 145 (1977).

    Google Scholar 

  89. E.L. Schaffer, Research Paper FPL 450, U.S. Department of Agriculture, Forest Products Lab., Madison, WI (1984).

    Google Scholar 

  90. “Structural Fire Design,” Part 1.2, in Eurocode 5, CEN, Brussels, Belgium (1995).

    Google Scholar 

  91. F.F. Wangaard, Section 29, in Engineering Materials Handbook (C.L. Mantell, ed.), McGraw-Hill, New York (1958).

    Google Scholar 

  92. V.K.R. Kodur, J. Fike, R. Fike, and M. Tabaddoor, “Factors governing fire resistance of engineered wood I-joists”, Proceedings of the Seventh International Conference on Structures in Fire, Zurich, Switzerland, pp. 417–426 (2012).

    Google Scholar 

  93. V.K.R. Kodur and D. Baingo, “Fire Resistance of FRP Reinforced Concrete Slabs,” IR 758, IRC, National Research Council of Canada, Ottawa (1998).

    Google Scholar 

  94. V.K.R. Kodur, “Fire Resistance Requirements for FRP Structural Members,” Proceedings—Vol I, 1999 CSCE Annual Conference, Canadian Society of Civil Engineers, Regina, Saskatchewan (1999).

    Google Scholar 

  95. T.S. Gates, “Effects of Elevated Temperature on the Viscoelastic Modeling of Graphite/Polymeric Composites,” NASA Technical Memorandum 104160, NASA, Langley Research Center, Hampton, VA (1991).

    Google Scholar 

  96. Y.C. Wang and V.K.R. Kodur, “Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature,” Cement and Concrete Composites, 27, pp. 864–874 (2005).

    Article  Google Scholar 

  97. SK. Foster, “High Temperature Residual Performance of Externally-Bonded FRP Systems for Concrete,” MSc Thesis, Kingston, Canada, Department of Civil Engineering, Queen’s University (2006).

    Google Scholar 

  98. A. Katz and N. Berman, “Modeling the Effect of High Temperature on the Bond of FRP Reinforcing Bars to Concrete,” Cement and Concrete Composites Journal, 22, pp. 433–443 (2000).

    Article  Google Scholar 

  99. A. Katz, N. Berman, and L.C. Bank, “Effect of High Temperature on the Bond Strength of FRP Rebars,” Journal of Composites for Construction, 3, 2, pp. 73–81 (1999).

    Article  Google Scholar 

  100. A. Sumida, T. Fujisaki, K. Watanabe, and T. Kato, “Heat Resistance of Continuous Fiber Reinforced Plastic Rods,” Proceedings, Fifth Annual Symposium on Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, Thomas Telford, London, pp. 557–565 (2001).

    Google Scholar 

  101. N. Galati, B. Vollintine, A. Nanni, L.R. Dharani, and M.A. Aiello, “Thermal Effects on Bond Between FRP Rebars and Concrete,” Proceedings, Advanced Polymer Composites for Structural Applications in Construction, Woodhead Publishing Ltd., Cambridge, UK, pp. 501–508 (2004).

    Google Scholar 

  102. V.R. Kodur, L.A. Bisby, and M.F. Green, “Experimental Evaluation of the Fire Behavior of Fibre-Reinforced-Polymer-Strengthened Reinforced Concrete Columns,” Fire Safety Journal, 41, 7, pp. 547–557 (2005).

    Article  Google Scholar 

  103. V.R. Kodur and L.A. Bisby, “Evaluation of Fire Endurance of Concrete Slabs Reinforced with FRP Bars,” ASCE Journal of Structural Engineering, 131, 1, pp. 34–43 (2005).

    Article  Google Scholar 

  104. Y.C. Wang, P.M.H. Wong, and V.K.R. Kodur, “An Experimental Study of Mechanical Properties of FRP and Steel Reinforcing Bars at Elevated Temperatures,” Composite Structures, 80, 1, pp. 131–140 (2007).

    Article  Google Scholar 

  105. B. Yu, and V.K.R. Kodur, “Effect of Temperature on Strength and Stiffness Properties of Near-Surface Mounted FRP Reinforcement,” Journal of Composites, Part B: Engineering, 58, pp. 510–517 (2014).

    Google Scholar 

  106. T.Z. Harmathy, in ASTM STP301, American Society for Testing and Materials, Philadelphia (1961).

    Google Scholar 

  107. R.R. West and W.J. Sutton, Journal of the American Ceramic Society, 37, p. 221 (1954).

    Google Scholar 

  108. P. Ljunggren, Journal of the American Ceramic Society, 43, p. 227 (1960).

    Google Scholar 

  109. M.A. Sultan, “A Model for Predicting Heat Transfer Through Noninsulated Unloaded Steel-Stud Gypsum Board Wall Assemblies Exposed to Fire,” Fire Technology, 32, 3 (1996).

    Article  Google Scholar 

  110. “Gypsum Board: Typical Mechanical and Physical Properties,” GA-235–98, Gypsum Association, Washington, DC (1998).

    Google Scholar 

  111. M.A. Sultan, “Effect of Insulation in the Wall Cavity on the Fire Resistance Rating of Full-Scale Asymmetrical (1 × 2) Gypsum Board Protected Wall Assemblies,” in Proceedings of the International Conference on Fire Research and Engineering, Orlando, FL, SFPE, Boston (1995).

    Google Scholar 

  112. A.H. Buchanan, Structural Design for Fire Safety, John Wiley & Sons Ltd., Chichester, UK (2002).

    Google Scholar 

  113. V.K.R. Kodur, M. Dwaikat and R. Fike, “High-temperature properties of steel for fire resistance modeling of structures,” Journal of Materials in Civil Engineering, 22, 5, pp. 423–434 (2010).

    Article  Google Scholar 

  114. V.K.R. Kodur and A. Shakya, “Effect of temperature on thermal properties of fire insulation”, Fire Safety Journal, 61, pp. 314–323 (2013).

    Google Scholar 

  115. S. Park, S.L. Manzello, D.P. Bentz, and T. Mizukami, “Determining thermal properties of gypsum board at elevated temperatures”, Fire and Materials (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Certain commercial products are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendations or endorsement by the authors, nor does it imply that the product or material identified is the best available for the purpose.

Nomenclature, Greek Letters and Subscripts

a

Material constant, dimensionless

b

Constant, characteristic of pore geometry, dimensionless

c

Specific heat (J⋅kg–1⋅K–1)

\( \overline{c} \)

Specific heat for a mixture of reactants and solid products (J⋅kg–1⋅K–1)

E

Modulus of elasticity (Pa)

h

Enthalpy (J⋅kg–1)

Δh

Latent heat associated with a “reaction” (J⋅kg–1)

ΔH c

Activation energy for creep (J⋅kmol–1)

k

Thermal conductivity (W⋅m–1⋅K–1)

L v

Heat of gasification of wood

Dimension (m)

Δℓ

ℓ – ℓ 0

m

Exponent, dimensionless

M

Mass (kg)

n

Material constant, dimensionless

P

Porosity (m3⋅m–3)

q n

Net heat flux to char front

R

Gas constant (8315 J⋅kmol–1⋅K–1)

S

Specific surface area (m2.m–3)

t

Time (h)

T

Temperature (K or °C)

v

Volume fraction (m–3.m3)

w

Mass fraction (kg⋅kg–1)

Z

Zener-Hollomon parameter (h–1)

α

Thermal diffusivity

β

Coefficient of linear thermal expansion (m⋅m–1)

γ

Expression defined by Equation 9.3, dimensionless

β0

Charring rate (mm/min)

δ

Characteristic pore size (m)

ε

Emissivity of pores, dimensionless

ε

Strain (deformation) (m⋅m–1)

εt0

Creep parameter (m⋅m–1)

\( {\dot{\varepsilon}}_{ts} \)

Rate of secondary creep (m.m–1⋅h–1)

θ

Temperature-compensated time (h)

ξ

Reaction progress variable, dimensionless

π

Material property (any)

ρ

Density (kg⋅m–3)

σ

Stress; strength (Pa)

σ

Stefan-Boltzmann constant (5.67 × 10–8 W⋅m–2⋅K–4)

g

Glass transient (temperature)

a

Of air

I

Of the ith constituent

p

At constant pressure

s

Of the solid matrix

t

True

t

Time-dependent (creep)

T

At temperature T

u

Ultimate

y

Yield

0

Original value, at reference temperature

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Kodur, V.K.R., Harmathy, T.Z. (2016). Properties of Building Materials. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics