Skip to main content

Abstract

This chapter will describe how heating of a solid fuel leads to flaming ignition. The discussion will be centred on flaming ignition of solid fuels but will not address smouldering or spontaneous ignition since these subjects will be covered in Chaps. 19 and 20 respectively. Thus, the presence of a source of heat decoupled from the solid and fuel gasification will be assumed throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babrauskas, V., “Ignition Handbook,” Fire Science Publishers & Society of Fire Protection Engineers, 2003.

    Google Scholar 

  2. Engineering Guide: Piloted Ignition of Solid Materials Under radiant Exposure, Society of Fire Protection Engineers, Bethesda, Maryland, USA, 2002.

    Google Scholar 

  3. Hirata, T., Kashiwagi, T. and Brown, J.E., “Thermal and oxidative degradation of Poly (methyl methacrylate): Wight loss,” Macromolecules, 18, 1410–1418, 1985.

    Article  Google Scholar 

  4. Di Blasi, C., “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels,” Progress in Energy and Combustion Science, 19, 71–104, 1993.

    Article  Google Scholar 

  5. Ohlemiller, T.J., “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, 277–310, 1986.

    Article  Google Scholar 

  6. Rein, G., Lautenberger, C., Fernandez-Pello, A.C., Torero, J.L. & Urban, D.L., “Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion,” Combustion and Flame 146 95108 (2006).

    Article  Google Scholar 

  7. Lautenberger, C., Rein, G. & Fernandez-Pello, A.C., “The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data,” Fire Safety Journal 41 204214 (2006).

    Article  Google Scholar 

  8. Bal, N., “Uncertainty and complexity in pyrolysis modelling,” PhD Dissertation, University of Edinburgh, 2012.

    Google Scholar 

  9. Bal, N. and Rein, G., “Uncertainty and Calibration in Polymer Pyrolysis Modelling,” Recent Advances in Flame Retardancy of Polymeric materials, vol. 23, C. Wilke (Editor), BCC, May 2012.

    Google Scholar 

  10. Chao, Y.H. and Wang, J.H., “Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam,” Journal of Fire Science, 19, pp. 137–155, 2001.

    Google Scholar 

  11. Lautenberger C. and Fernandez-Pello, A.C., “Optimization algorithms for material pyrolysis property estimation,” Fire Safety Science, 10, 751–764, 2011.

    Article  Google Scholar 

  12. Chaos, M. Khan, M.M., Krishnamoorthy, N., De Ris, J.L. and Dorofeev, S.B. “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests,” Proceedings of the Combustion Institute, 33, 2599–2606, 2011.

    Article  Google Scholar 

  13. Bruns, M.C., Koo, J.H. and Ezekoye, O.A., “Population-based models of thermoplastic degradation: Using optimization to determine model parameters,” Polymer degradation and stability, 94, 1013–1022, 2009.

    Article  Google Scholar 

  14. Lyon, R.E., Safronava, N. and Oztekin, E., “A simple method for determining kinetic parameters for materials in fire models,” Fire Safety Science, 10, 765–777, 2011.

    Article  Google Scholar 

  15. Kashiwagi, T. and Nambu, H., “Global Kinetics constants for thermal oxidative degradation of a cellulosic paper,” Combustion and Flame, 88, 345–368, 1992.

    Article  Google Scholar 

  16. Cullis, C.F. and Hirschler, M.M., “The Combustion of Organic Polymers,” International Series of Monographs in Chemistry, Oxford Science Publications, Oxford, United Kingdom, 1981.

    Google Scholar 

  17. Drysdale, D., An Introduction to Fire Dynamics. Second Edition. John Wiley and Sons, New York, 1999.

    Google Scholar 

  18. Williams, F.A., Combustion Theory, 2nd Edition, Addison-Wesley Publishing Company, Inc., 1985.

    Google Scholar 

  19. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley and Sons, 2006.

    Google Scholar 

  20. Oztekin, E.S., Crowley, S.B., Lyon, R.E., Stoliarov, S.I., Patel, P. and Hull, T.R., Sources of variability in fire test data: a case study on poly(aryl ether ether ketone) (PEEK), Combustion and Flame, 159, 1720–1731, 2012.

    Article  Google Scholar 

  21. Stoliarov, S.I., Safronava, N. and Lyon, R.E., “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, 257–271, 2009.

    Article  Google Scholar 

  22. Nield, D.A. and Bejan, A., “Convection in Porous Media,” Springer-Verlag, 1992.

    Google Scholar 

  23. ASTM E-1354-03, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, American Society for Testing and Materials, Philadelphia, 2003.

    Google Scholar 

  24. ASTM 1321-97a, Standard Test Method for Determining Material Ignition and Flame Spread Properties, American Society for Testing and Materials, Philadelphia, 1997.

    Google Scholar 

  25. ASTM E-2058-03, “Standard Method of Test for Measurement of Synthetic Polymer Material Flammability Using the Fire propagation Apparatus (FPA),” American Society for Testing and Materials, Philadelphia, 2003.

    Google Scholar 

  26. Staggs, J.E.J., “Convection heat transfer in the cone calorimeter,” Fire Safety Journal, 44, 469–474, 2009.

    Article  Google Scholar 

  27. Staggs, J.E.J., “A reappraisal of convection heat transfer in the cone calorimeter,” Fire Safety Journal, 46, 125–131, 2011.

    Article  Google Scholar 

  28. Zhang, J. and Delichatsios, M.A., “Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems,” Fire Safety Journal, 44, 681–690, 2009.

    Article  Google Scholar 

  29. Torero, J.L. “Scaling-Up Fire,” Proceedings of the Combustion Institute, 34 (1), 99–124, 2013.

    Article  Google Scholar 

  30. Fernandez-Pello, A.C., “The Solid Phase,” In Combustion Fundamentals of Fire, Ed. G. Cox, Academic Press, New York, pp. 31–100, 1995.

    Google Scholar 

  31. Fernandez-Pello, A.C. “On fire ignition,” Fire Safety Science, 10, 25–42, 2011.

    Article  Google Scholar 

  32. Niioka, T., Takahashi, M., Izumikawa, M., 1981, “Gas-phase ignition of a solid fuel in a hot stagnation point flow”, 18th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 741–747.

    Google Scholar 

  33. Delichatsios M A and Delichatsios M M, “Critical Mass Pyrolysis rates for Extinction of Fires over solid Materials” Fifth Symposium on Fire Safety Science, 153–164, 1996.

    Google Scholar 

  34. Torero, J.L., Vietoris, T., Legros, G., Joulain, P. “Estimation of a Total Mass Transfer Number from Stand-off Distance of a Spreading Flame,” Combustion Science and Technology, 174 (11–12), pp. 187-203, 2002.

    Google Scholar 

  35. Quintiere, J.G., “Fundamentals of Fire Phenomena,” John Wiley and Sons, 2006.

    Google Scholar 

  36. Gray, P. and Lee, P. R. “Thermal Explosion Theory,” Oxidation and Combustion Reviews, 2, 3–180, 1967.

    Google Scholar 

  37. Atreya, A., “Ignition of Fires,” Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences 356 2787–2813 (1998).

    Article  Google Scholar 

  38. Horrocks, A.R., Gawande, S., Kandola, B. and Dunn, K. W., “Recent Advances in Flame Retardancy of Polymeric Materials,” Business Communications Co., Norwalk, Connecticut, USA, 2000.

    Google Scholar 

  39. Backer, S., Tesoro, G.C., Toong, T.Y. and Moussa, N.A., “Textile Fabric Flammability,” The MIT Press, Cambridge, Massachusetts, USA, 1976.

    Google Scholar 

  40. Williams, F.A., “A Review of Flame Extinction,” Fire Safety Journal, 3, 163–175, 1981.

    Article  Google Scholar 

  41. Rasbash D J, Drysdale D D, and Deepak D, “Critical Heat and Mass Transfer at Pilot Ignition and Extinction of a Material,” Fire Safety Journal, 10, 1–10, 1986.

    Article  Google Scholar 

  42. Fereres, S., Lautenberger, C., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “Mass flux at ignition in reduced pressure environments,” Combustion and Flame, 158, 1301–1306, 2011.

    Article  Google Scholar 

  43. Thomson H E, Drysdale D D, and Beyler C L, “An Experimental Evaluation of Critical Surface Temperature as a Criterion for Piloted Ignition of Solid Fuels,” Fire Safety Journal, 13 185–196, 1988.

    Article  Google Scholar 

  44. Beyler, C., “A Unified Model of Fire Suppression,” Journal of Fire Protection Engineering, 4 (1), 5–16, 1992.

    Article  Google Scholar 

  45. Quintiere, J.G. and Rangwala, A.S., “A theory for flame extinction based on flame temperature,” Fire and Materials, Volume 28, Issue 5, September/October, Pages: 387–402, 2004.

    Google Scholar 

  46. Cordova, J.L., Walther, D.C., Torero, J.L. and Fernandez-Pello, A.C. “Oxidizer Flow Effects on the Flammability of Solid Combustibles,” Combustion Science and Technology, 164, No. 1–6, pp. 253–278, 2001.

    Google Scholar 

  47. McAllister, S., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible,” Combustion and Flame, 157, 1753–1759, 2010.

    Article  Google Scholar 

  48. Roberts, A.F. and Quince, B.W., “A Limiting Condition for Burning of Flammable Liquids,” Combustion and Flame, 20, 245–251, 1973.

    Article  Google Scholar 

  49. Lautenberger, C. and Fernandez-Pello, A.C. “A generalized pyrolysis model for combustible solids,” 5th International Seminar on Fire and Explosion Hazards, April, 23–27, Edinburgh, UK.

    Google Scholar 

  50. Butler, K. M. Mixed Layer Model for Pyrolysis of Bubbling Thermoplastic Materials, National Institute of Standards and Technology, Gaithersburg, MD, NISTIR 6242; October 1998.

    Google Scholar 

  51. Kashiwagi, T., “Polymer Combustion and Flammability-Role of the Condensed Phase,” Proceedings of the Combustion Institute, 25, 1423–1437, 1994.

    Article  Google Scholar 

  52. Di Blasi C., “The state of the art of transport models for charring solid degradation,” Polymer International 49 1133–1146, 2000.

    Article  Google Scholar 

  53. Moghtaderi, B., “The State-of-the-Art in Pyrolysis Modeling of Lignocellulosic Solid Fuels,” Fire and Materials 30 1–34, 2006.

    Article  Google Scholar 

  54. Lautenberger, C. & Fernandez-Pello, A.C., “Pyrolysis Modeling, Thermal Decomposition, and Transport Processes in Combustible Solids,” to appear in Transport Phenomena in Fires, Ed. M. Faghri & B. Sunden, WIT Press, 2008.

    Google Scholar 

  55. Lautenberger, C., Kim, E., Dembsey, N. and Fernandez-Pello, A.C., “The role of decomposition kinetics in pyrolysis modelling – Application to a fire retardant polyester composite,” Fire Safety Science, 9, 1201–1212, 2009.

    Google Scholar 

  56. Stoliarov, S.I., Crowley, S., Walters, R.N. and Lyon, R.E., “Prediction of the burning rates of charring polymers,” Combustion and Flame, 157, 2024–2034, 2010.

    Article  Google Scholar 

  57. Stoliarov, S.I., Crowley, S., Lyon, R.E. and Linteris, G.T., “Prediction of the burning rates of non-charring polymers,” Combustion and Flame, 156, 1068–1083, 2009.

    Article  Google Scholar 

  58. Bal, N. and Rein, G., “Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes,” Combustion and Flame, 158, 1109–1116, 2011.

    Article  Google Scholar 

  59. Wasan, S.R., Rauwoens,P., Vierendeels, J. and Merci, B., “An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire,” Combustion and Flame, 157, 715–734, 2010.

    Google Scholar 

  60. Dakka, S.M., Jackson, G. S. and Torero, J.L., “Mechanisms Controlling the Degradation of Poly(methyl methacrylate) Prior to Piloted Ignition” Proceedings of the Combustion Institute, 29, 281–287, 2002.

    Article  Google Scholar 

  61. Beaulieu, P.A., and Dembsey, N.A., “Flammability Characteristics at Applied Heat Flux Levels up to 200 kW/m2”, Fire and Materials, 2007.

    Google Scholar 

  62. Hallman. J., “Ignition Characteristics of Plastics and Rubber,” Ph. D. Thesis, University of Oklahoma, Norman, OK, USA, 1971.

    Google Scholar 

  63. Jiang, F., deRis J.L. and Khan, M.M. “Absorption of thermal energy in PMMA by in-depth radiation,” Fire Safety Journal, 44, 106–112, 2009.

    Article  Google Scholar 

  64. Girods, P., Bal, N., Biteau, H., Rein, G. and Torero, J.L., “Comparison of pyrolysis behaviour results between the Cone Calorimeter and the Fire Propagation Apparatus heat sources,” Fire Safety Science, 10, 889–901, 2011.

    Article  Google Scholar 

  65. Bal, N., Raynard, J., Rein, G., Torero, J.L., Försth, M., Boulet, P., Parent, G., Acem, Z. and Linteris, G., “Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources,” International Journal of Heat and Mass Transfer, (in press), 2013.

    Google Scholar 

  66. Steinhaus, T. 1999 “Evaluation of the Thermophysical Properties of Poly(Methyl Methacrylate): A Reference Material for the Development of a Flammability Test for Micro-Gravity Environments,” Masters Thesis, University of Maryland.

    Google Scholar 

  67. McGrattan, K., Klein, B., Hostikka, S., Floyd, J., “Fire Dynamics Simulator (Version 5), User’s Guide,” NIST Special Publication 1019–5, October 1, 2007.

    Google Scholar 

  68. Mowrer, F.W., “An analysis of effective thermal properties of thermally thick materials,” Fire Safety Journal, Volume 40, Issue 5, Pages 395–410, July 2005.

    Google Scholar 

  69. deRis, J. L. and Khan, M. M., “A Sample Holder for Determining Material Properties,” Fire and Materials, 24, 219–226, 2000.

    Google Scholar 

  70. Quintiere, J.G., “A Simplified Theory for Generalizing Results from a Radiant Panel Rate of Flame Spread Apparatus,” Fire and Materials, Vol. 5, No. 2, 1981.

    Google Scholar 

  71. Wickman, I. S., “Theory of Opposed flame Spread,” Progress in Energy and Combustion Science, 18, 6, pp. 553–593, 1993.

    Article  Google Scholar 

  72. Quintiere, J.G., “Principles of Fire Behavior,” Delmar Publishers, 1997.

    Google Scholar 

  73. Lautenberger, C. Torero, J.L. and Fernandez-Pello, A.C., “Understanding Materials Flammability,” Chapter 1, Flammability Testing of Materials in Building, Construction, Transport and Mining Sectors, V. B. Apte Editor, pp. 1-21, CRC Press, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Torero, J. (2016). Flaming Ignition of Solid Fuels. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics