Skip to main content

Identification of SUMO E3 Ligase-Specific Substrates Using the HuProt Human Proteome Microarray

  • Protocol
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1295))

Abstract

The functional protein microarray is a powerful and versatile systems biology and proteomics tool that allows the rapid activity profiling of thousands of proteins in parallel. We have recently developed a human proteome array, the HuProt array, which includes ~80 % of all the full-length proteins of the human proteome. In one recent application of the HuProt array, we identified numerous SUMO E3 ligase-dependent SUMOylation substrates. For many SUMO E3 ligases, only a small number of substrates have been identified and the target specificities of these ligases therefore remain poorly defined. In this protocol, we outline a method we developed using the HuProt array to screen the human proteome to identify novel SUMO E3 ligase substrates recognized by specific E3 ligases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu H, Bilgin M, Bangham R et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

  2. Zhu H, Hu S, Jona G et al (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci U S A 103:4011–4016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chen CS, Korobkova E, Chen H et al (2008) A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods 5:69–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Popescu SC, Popescu GV, Bachan S et al (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104: 4730–4735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lueking A, Possling A, Huber O et al (2003) A nonredundant human protein chip for antibody screening and serum profiling. Mol Cell Proteomics 2:1342–1349

    Article  CAS  PubMed  Google Scholar 

  6. Hu S, Li Y, Liu G et al (2007) A protein chip approach for high-throughput antigen identification and characterization. Proteomics 7:2151–2161

    Article  CAS  PubMed  Google Scholar 

  7. Song Q, Liu G, Hu S et al (2010) Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res 9:30–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hu S, Xie Z, Onishi A et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hu S, Wan J, Su Y et al (2013) DNA methylation presents distinct binding sites for human transcription factors. eLife 2:e00726

    PubMed Central  PubMed  Google Scholar 

  10. Jeong JS, Jiang L, Albino E et al (2012) Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics 11:O111.016253

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lee YI, Giovinazzo D, Kang HC et al (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics 13:63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tarrant MK, Rho HS, Xie Z et al (2012) Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat Chem Biol 8:262–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Barry G, Briggs JA, Vanichkina DP et al (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486–494

    Article  CAS  PubMed  Google Scholar 

  14. Donnelly CJ, Zhang PW, Pham JT et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hu CJ, Song G, Huang W et al (2012) Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays. Mol Cell Proteomics 11:669–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  CAS  PubMed  Google Scholar 

  17. Oh Y, Chung KC (2013) UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131. J Biol Chem 288:9102–9111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Liang Q, Deng H, Li X et al (2011) Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol 187:4754–4763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Garcia-Gutierrez P, Juarez-Vicente F, Gallardo-Chamizo F et al (2011) The transcription factor Krox20 is an E3 ligase that sumoylates its Nab coregulators. EMBO Rep 12:1018–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dos Santos MT, Trindade DM, Goncalves KA et al (2011) Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase. Mol Biosyst 7:180–193

    Article  PubMed  Google Scholar 

  21. Chu Y, Yang X (2011) SUMO E3 ligase activity of TRIM proteins. Oncogene 30: 1108–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cox, E. et al. (2015). Identification of SUMO E3 Ligase-Specific Substrates Using the HuProt Human Proteome Microarray. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_32

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics