Skip to main content

Enrichment of Low-Abundant Protein Targets by Immunoprecipitation Upstream of Mass Spectrometry

  • Protocol
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1295))

Abstract

Immunoprecipitation (IP) is commonly used upstream of mass spectrometry (MS) as an enrichment tool for low-abundant protein targets. However, several aspects of the classical IP procedure such as nonspecific protein binding to the isolation matrix, detergents or high salt concentrations in wash and elution buffers, and antibody chain contamination in elution fractions render it incompatible with downstream mass spectrometry analysis. Here, we discuss two IP workflows that are designed to minimize or eliminate these contaminants: the first employs biotinylated antibodies and streptavidin magnetic beads while the second method utilizes a traditional antibody that is oriented and cross-linked to Protein AG magnetic beads. Both modified magnetic supports have low background binding and both antibody immobilization strategies significantly reduce or eliminate antibody heavy and light chain contamination in the eluent, minimizing potential ion suppression effects and thereby maximizing detection of target antigens and interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humpert ML, Tzouros M, Thelen S et al (2012) Complementary methods provide evidence for the expression of CXCR7 on human B cells. Proteomics 12:1938–1948

    Article  CAS  PubMed  Google Scholar 

  2. Sanders RL, Spector DH (2010) Human cytomegalovirus IE2 86 and IE2 40 proteins differentially regulate UL84 protein expression posttranscriptionally in the absence of other viral gene products. J Virol 84:5158–5170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Soulé J, Alme M, Myrum C et al (2012) Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation. J Biol Chem 287:22354–22366

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tanioka T, Tamura Y, Fukaya M, Shinozaki S et al (2011) Inducible nitric-oxide synthase and nitric oxide donor decrease insulin receptor substrate-2 protein expression by promoting proteasome-dependent degradation in pancreatic β-cells: involvement of glycogen synthase kinase-3β. J Biol Chem 286(33):29388–29396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Grønborg M, Kristiansen TZ, Stensballe A et al (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies. Mol Cell Proteomics 1(7):517–527

    Article  PubMed  Google Scholar 

  6. Stokes MP, Farnsworth CL, Moritz A et al (2012) PTMScan Direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol Cell Proteomics 11:187–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ghafari M, Höger H, Falsafi K et al (2012) Mass spectrometrical identification of hippocampal NMDA receptor subunits NR1, NR2A-D and five novel phosphorylation sites on NR2A and NR2B. J Proteome Res 11:1891–1896

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Silva JC, Skinner ME, Lombard DB (2013) Mass spectrometry-based detection of protein acetylation. Methods Mol Biol 1077:81–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Guo A, Gu H, Zhou J et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Jochmann R, Pfannstiel J, Chudasama P et al (2013) O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 10:1114–1130

    Article  Google Scholar 

  11. Hsiao HH, Meulmeester E, Urlaub H (2012) Identification of endogenous SUMO1 accepter sites by mass spectrometry. Methods Mol Biol 893:431–441

    Article  CAS  PubMed  Google Scholar 

  12. Schwertman P, Bezstarosti K, Laffeber C et al (2013) An immunoaffinity purification method for the proteomic analysis of ubiquitinated protein complexes. Anal Biochem 440:227–236

    Article  CAS  PubMed  Google Scholar 

  13. Sun X-X, Challagundla KB, Dai M-S (2012) Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J 31:576–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Borch J, Roepstorff P, Møller-Jensen J (2011) Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Mol Cell Proteomics 10(7):O110.006775. doi:10.1074/mcpO110.006775

    Article  PubMed Central  PubMed  Google Scholar 

  15. Penn JKM, Graham P, Deshpande G et al (2008) Functioning of the Drosophila Wilms’-Tumor-1-associated protein homolog, F1(2)d, in sex-lethal-dependent alternative splicing. Genetics 178:737–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Turriziani B, Garcia-Munoz A, Pilkington R et al (2014) On-bead digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology 3:320–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vasilescu J, Guo X, Kast J (2004) Identification of protein-protein interactions using in vivo cross-linking and mass spectrometry. Proteomics 4:3845–3854

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell L, Huard S, Cotrut M et al (2013) mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A 110(17):E1641–E1650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang BX, Kim H-Y (2013) Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 8(4):e61430. doi:10.1371/journal.pone.0061430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Trinkle-Mulcahy L, Boulon S, Lam YW et al (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183:223–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhong J, Kim M-S, Chaerkady R et al (2012) TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteomics 11(6):M112.017764. doi:10.1074/mcp.M112.017764

    Article  PubMed Central  PubMed  Google Scholar 

  22. Culver BP, Savas JN, Park SK et al (2012) Proteomic analysis of wild-type and mutant Huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 287:21599–21614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang X, Lavoie G, Fort L et al (2012) Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol Cell Biol 33:1657–1670

    Article  Google Scholar 

  24. Vogt A, Fuerholzner B, Kinkl N et al (2013) Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue. Mol Cell Proteomics 12(5):1395–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Boulon S, Ahmad Y, Trinkle-Mulcahy L et al (2010) Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Mol Cell Proteomics 9(5):861–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang Q, Chaerkady R, Wu J et al (2011) Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci U S A 108:2444–2449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee AYH, Yates NA, Ichetovkin M et al (2012) Measurement of fractional synthetic rates of multiple protein analytes by triple quadrupole mass spectrometry. Clin Chem 58:619–627

    Article  CAS  PubMed  Google Scholar 

  28. Tong J, Taylor P, Peterman SM et al (2009) Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041. Mol Cell Proteomics 8(9):2131–2144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wu C, Wei W, Li C et al (2012) Delicate analysis of post-translational modifications on Dishevelled 3. J Proteome Res 11(7): 3829–3837

    Article  CAS  PubMed  Google Scholar 

  30. Rardin MJ, Held JM, Gibson BW (2013) Targeted quantitation of acetylated lysine peptides by selected reaction monitoring mass spectrometry. Methods Mol Biol 1077: 121–131

    Article  CAS  PubMed  Google Scholar 

  31. Herzog F, Kahraman A, Boehringer D et al (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337: 1348–1352

    Article  CAS  PubMed  Google Scholar 

  32. Kaboord B, Perr M (2007) Isolation of proteins and protein complexes by immunoprecipitation. In: Posch A (ed) Methods in molecular biology, vol. 424. 2D PAGE: sample preparation and fractionation. Humana, Totowa, NJ, pp 379–384

    Google Scholar 

  33. Qoronfleh MW, Ren L, Emery D et al (2003) Use of immunomatrix methods to improve protein-protein interaction detection. J Biomed Biotechnol 5:291–298

    Article  Google Scholar 

  34. Kan A, Mohamedali A, Tan SH et al (2013) An improved method for the detection and enrichment of low-abundant membrane and lipid raft-residing proteins. J Proteomics 79:299–304

    Article  CAS  PubMed  Google Scholar 

  35. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  36. Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev 8:645–654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Kaboord Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kaboord, B., Smith, S., Patel, B., Meier, S. (2015). Enrichment of Low-Abundant Protein Targets by Immunoprecipitation Upstream of Mass Spectrometry. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics