Skip to main content

Abstract

Nitrogen is an essential macronutrient for the plants and fertilizer N-use efficiency is becoming an increasing economic and environmental concern. The nutrient stress conditions of N deficiency and N excess may get exacerbated by other abiotic stresses, which in turn are likely to be worsened by climate change. Exploring their interrelationships is being increasingly facilitated by the growing knowledge of the genome-wide N response as well as other abiotic stress responses in model plants. Nitrate and its more reduced forms are not only sources of plant N nutrition but also signals that govern their own uptake; N, C, and redox metabolism; and hormonal and other organism-wide responses. The signaling mechanisms involved in N response or response to N stress or N-use efficiency are currently far less well understood than those in other abiotic stresses. The purpose of this review is to provide an overview of the current state of knowledge on normal N response and response to N stress, as well as their interrelationships with other abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguera E, Ruano D, Cabello Haba P (2006) Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L) plants. J Plant Physiol 163:809–817

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15(2):185–191. doi:10.1016/j.pbi.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  • Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R (2012) The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J Exp Bot 63:5017–5033

    Article  CAS  PubMed  Google Scholar 

  • Anjana SU, Iqbal M (2007) Nitrate accumulation in plants, factors affecting the process and human health implications—a review. Agron Sustain Dev 27:45–57

    Article  CAS  Google Scholar 

  • Anjana SU, Iqbal M, Abrol YP (2007) Are nitrate concentrations in leafy vegetables within safe limits? Curr Sci 92:355–360

    Google Scholar 

  • Bi YM, Wang RL, Zhu T, Rothstein SJ (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8:281. doi:10.1186/1471-2164-8-281

    Article  PubMed Central  PubMed  Google Scholar 

  • Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328(5980):899–903. doi:10.1126/science.1186440

    Article  CAS  PubMed  Google Scholar 

  • Borner AP, Kielland K, Walker MD (2008) Effects of simulated climate change on plant phenology and nitrogen mineralization in Alaskan arctic Tundra. Arct Antarct Alp Res 40:27–38

    Article  Google Scholar 

  • Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Semin Cell Dev Biol 23(6):648–654. doi:10.1016/jsemcdb.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37(4):731–747. doi:10.1007/s12038-012-9242-2

    Article  CAS  PubMed  Google Scholar 

  • Carlisle E, Myers S, Raboy V, Bloom A (2012) The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci 3(195):1–13. doi:10.3389/fpls.2012.00195

    Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57(3):426–435. doi:10.1111/j.1365-313X.2008.03695.x

    Article  CAS  PubMed  Google Scholar 

  • Chapman N, Miller T (2011) Nitrate transporters and root architecture. In: Geisler M, Venema K (eds) Transporters and pumps in plant signaling. Signaling and communication in plants, vol 7. Springer, Berlin, p 388. doi:10.1007/978-3-642-14369-4

  • Chardon F, Barthélémy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61:2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Noël V, Masclaux-Daubresse C (2012) Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63:3321–3323. doi:10.1093/jxb/err353

    Article  Google Scholar 

  • Chen BM, Wang ZH, Li SX, Wang GX, Song HX, Wang XN (2004) Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci 167(3):635–643. doi:10.1016/j.plantsci.2004.05.015

    Article  CAS  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–2017

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181(5):604–611. doi:10.1016/j.plantsci.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Krapp A, Kaiser WM (2010) Cellular biology of nitrogen metabolism and signaling. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Springer Berlin, Heidelberg, pp 145–172

    Chapter  Google Scholar 

  • Das SK, Pathak RR, Choudhury D, Raghuram N (2007) Genomewide computational analysis of nitrate response elements in rice and Arabidopsis. Mol Genet Genomics 278(5):519–525. doi:10.1007/s00438-007-0268-3

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo E, Rinaldi M (2008) Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crop Res 105(3):202–210

    Article  Google Scholar 

  • Dichio B, Xiloyannis C, Sofo A, Montanaro G (2007) Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 290:127–137

    Article  CAS  Google Scholar 

  • Dong S, Scagel CF, Cheng L, Fuchigami LH, Rygiewicz PT (2001) Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiol 21(8):541–547

    Article  CAS  PubMed  Google Scholar 

  • Ferrario-Méry S, Thibaud MC, Betsche T, Valadier MH, Foyer CH (1997) Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture. Planta 202:510–521

    Article  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Le Gouis J (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119(4):645–662

    Article  CAS  PubMed  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55(396):295–306. doi:10.1093/jxb/erh006

    Article  CAS  PubMed  Google Scholar 

  • Galloway J, Raghuram N, Abrol YP (2008) A perspective on reactive nitrogen in a global, Asian and Indian context. Curr Sci 94(11):1375–1381

    CAS  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor (s) in plants. J Exp Bot 62(7):2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605. doi:10.1016/j.tplants.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena TA, Fukai S, Blamey FPC (2003) Low temperature induced spikelet sterility in rice. I. Nitrogen fertilisation and sensitive reproductive period. Aust J Agr Res 54:937–946

    Article  Google Scholar 

  • Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114(3):403–419

    Google Scholar 

  • Harrigan GG, Ridley WP, Miller KD, Sorbet R, Riordan SG, Nemeth MA, Reeves W, Pester TA (2009) The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn. J Agric Food Chem 57:9754–9763

    Article  CAS  PubMed  Google Scholar 

  • Hirose T (2011) Nitrogen use efficiency revisited. Oecologia 166(4):863–867. doi:10.1007/s00442-011-1942

    Article  PubMed  Google Scholar 

  • Ho CH, Tsay YF (2010) Nitrate, ammonium, and potassium sensing and signaling. Curr Opin Plant Biol 13(5):604–610. doi:10.1016/j.pbi.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194. doi:10.1016/j.cell.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Drengstig T, Ruoff P (2012) Integrating fluctuating nitrate uptake and assimilation to robust homeostasis. Plant Cell Environ 35(5):917–928. doi:10.1111/j.1365-3040.2011.02462.x

    Article  CAS  PubMed  Google Scholar 

  • Humbert S, Subedi S, Cohn J, Zeng B, Bi Y, Chen X, Rothstein SJ (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14(1):1. doi:10.1186/1471-2164-14-3

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change: changes in atmospheric constituents and in radiative forcing. In: Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jie Z, Yuncong Y, Streeter JG, Ferree DC (2010) Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phosphorus absorbed in different section of leaves and stems of Fugi/M9EML, a young apple seedling. Afr J Biotechnol 9:5320–5325

    Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62(4):1499–1509. doi:10.1093/jxb/erq297

    Article  CAS  PubMed  Google Scholar 

  • Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Article  Google Scholar 

  • Kojima S, Bohner A, Gassert B, Yuan L, von Wiren N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2010) Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant J 63(2):269–282. doi:10.1111/j.1365-313X.2010.04239.x

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2011) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant Cell Physiol 52(5):824–836. doi:10.1093/pcp/pcr033

    Article  CAS  PubMed  Google Scholar 

  • Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466. doi:10.1093/jxb/erq425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A, Meyer C (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65(3):789–798. doi:10.1093/jxb/eru001

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Gojon A (2010) Nitrate-regulated auxin transport by NRT11 defines a mechanism for nutrient sensing in plants. Dev Cell 18(6):927–937. doi:10.1016/j.devcel.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16(4):178–182. doi:10.1016/j.tplants.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, Gonzalez EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroides and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li MH, Cherubini P, Dobbertin M, Arend M, Xiao WF, Rigling A (2013) Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol 15(s1):177–184

    Article  CAS  PubMed  Google Scholar 

  • Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60(5):617–631

    Article  CAS  PubMed  Google Scholar 

  • Lightfoot DA, Mungur R, Ameziane R, Nolte S, Long L, Bernhard K, Colter A, Jones K, Iqbal M, Varsa E, Young B (2007) Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA)of E coli. Euphytica 156:103–116

    Article  CAS  Google Scholar 

  • Lillo C (2004) Light regulation of nitrate uptake, assimilation and metabolism. Plant Ecophysiol 3:149–184

    CAS  Google Scholar 

  • Lillo C (2008) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415(1):11–19. doi:10.1042/BJ20081115

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, StClair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crop Res 90(1):101–115. doi:10.1016/j.fcr.2004.07.008

    Article  Google Scholar 

  • Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier MH (2005) The two nitrogen mobilization and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signaling. J Exp Bot 58(9):2297–2306. doi:10.1093/jxb/erm066

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462. doi:10.1146/annurev-arplant-042809-112116

    Article  CAS  PubMed  Google Scholar 

  • Mokhele B, Zhan X, Yang G, Zhang X (2012) Review: nitrogen assimilation in crop plants and its affecting factors. Can J Plant Sci 92:399–405. doi:10.4141/cjps2011-135

    Article  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29. doi:10.1007/s11104-013-1645-9

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48. doi:10.1111/j.1469-8137.2008.02751.x

    Article  PubMed  Google Scholar 

  • Natali SM, Sanudo-Wilhelmy SA, Lerdau MT (2009) Plant and soil mediation of elevated CO2 impacts on trace metals. Ecosystems 12:715–727. doi:10.1007/s10021-009-9251-7

    Article  CAS  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60(7):1927–1937. doi:10.1093/jxb/erp018

    Article  CAS  PubMed  Google Scholar 

  • Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr Sci 94(11):1394–1403

    CAS  Google Scholar 

  • Pathak RR, Lochab S, Raghuram N (2011) Comprehensive biotechnology, 2nd edn, vol 1. Elsevier, Oxford, pp 209–218. doi:10.1016/B978-0-08-088504-900472-4

  • Qiao Z, Murray F (1998) The effects of NO2 on the uptake and assimilation of nitrate by soybean plants. Environ Exp Bot 10:33–40

    Article  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci U S A 101:11506–11510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101(30):11001–11006. doi:10.1073/pnas.0403588101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11(s1):4–23

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C (2007) Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed 20(1):15–29. doi:10.1007/s11032-006-9041-2

    Article  CAS  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151(3):1009–1016. doi:10.1104/pp.109.144113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios- Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimono H, Bunce JA (2009) Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Ann Bot 103:87–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song C, Zeng F, Feibo W, Ma W, Zhang G (2010) Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. J Integr Omics 1(1):78–87

    Google Scholar 

  • StClair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1–2):101–115. doi:10.1007/s11104-010-0328-z

    Article  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Bleeker A (2013) Environmental science: the shape of nitrogen to come. Nature 494(7438):435–437. doi:10.1038/nature11954

    Article  CAS  PubMed  Google Scholar 

  • Tjoelker MG, Reich PB, Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Article  Google Scholar 

  • Touraine B, Class ADM (1997) NO3 − and CIO3 − fluxes in the chll-5 mutant of Arabidopsis thaliana. Plant Physiol 114:137–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Townsend AR, Robert WH, Fakhri AB, Mary SB, Cory CC, Sharon KC, Andrew PD, Paul RE, Elisabeth AH, Dennis RK, Michael AM, Christine AR, Peter W, Amir HW (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1(5):240–246

    Article  Google Scholar 

  • Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Quaggiotti S (2011) Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol 192(2):338–352. doi:10.1111/j.1469-8137.2011.03822.x

    Article  CAS  PubMed  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581(12):2290–2300. doi:10.1016/j.febslet.2007.04.047

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Chory J (2009) A toggle switch in plant nitrate uptake. Cell 138(6):1064–1066. doi:10.1016/j.cell.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12(8):1491–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang WH, Köhler B, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175(4):467–477. doi:10.1016/j.plantsci.2008.05.018

    Article  CAS  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17(8):458–467. doi:10.1016/j.tplants.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Liu Y, Tian M, Chen R, Zheng Z, He C (2011) Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. Afr J Biotechnol 10(6):939–949

    CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. doi:10.1146/annurev-arplant-042811-105532

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Raghuram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jangam, A.P., Raghuram, N. (2015). Nitrogen and Stress. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_12

Download citation

Publish with us

Policies and ethics