Skip to main content

Campenot Cultures and Microfluidics Provide Complementary Platforms for Spatial Study of Dorsal Root Ganglia Neurons

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Dorsal root ganglia (DRG) neurons are a functionally diverse population of sensory neurons with specialized morphology to respond to external stimuli. These pseudo-unipolar neurons extend a single axon that bifurcates to innervate the periphery and spinal cord, allowing sensory information from the environment to be transferred rapidly to the central nervous system. During development, these DRG neurons rely on peripheral target-derived neurotrophins for survival. Due to their unique morphology, DRG neurons exhibit spatially complex signaling and regulated gene expression that are challenging to study in vivo or in conventional cultures. The development of compartmented culture systems has been invaluable to the study of neurotrophin signaling, mRNA transport and localization, and local protein synthesis in axons. Here we describe the setup and maintenance of rat DRG neurons in two different compartmented culture platforms: Campenot cultures and microfluidics chambers. These systems are highly complementary and so together can be used for biochemical analysis and for high resolution imaging of neuronal cell bodies and their extensive axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segal RA (2003) Selectivity in neurotrophin signaling: theme and variations. Annu Rev Neurosci 26:299–330

    Article  CAS  PubMed  Google Scholar 

  2. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937

    Article  CAS  PubMed  Google Scholar 

  3. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74(10):4516–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Campenot RB (1982) Development of sympathetic neurons in compartmentalized cultures. II Local control of neurite growth by nerve growth factor. Dev Biol 93(1):1–12

    Article  CAS  PubMed  Google Scholar 

  5. Campenot RB (1994) NGF and the local control of nerve terminal growth. J Neurobiol 25(6):599–611

    Article  CAS  PubMed  Google Scholar 

  6. Campenot RB, Lund K, Mok SA (2009) Production of compartmented cultures of rat sympathetic neurons. Nat Protoc 4(12):1869–1887

    Article  CAS  PubMed  Google Scholar 

  7. Karten B et al (2005) Neuronal models for studying lipid metabolism and transport. Methods 36(2):117–128

    Article  CAS  PubMed  Google Scholar 

  8. Vance JE et al (1991) Biosynthesis of membrane lipids in rat axons. J Cell Biol 115(4):1061–1068

    Article  CAS  PubMed  Google Scholar 

  9. Ginty DD, Segal RA (2002) Retrograde neurotrophin signaling: Trk-ing along the axon. Curr Opin Neurobiol 12(3):268–274

    Article  CAS  PubMed  Google Scholar 

  10. Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14(3):177–187

    Article  CAS  PubMed  Google Scholar 

  11. Pazyra-Murphy MF, Segal RA (2008) Preparation and maintenance of dorsal root ganglia neurons in compartmented cultures. J Vis Exp 20

    Google Scholar 

  12. Watson FL et al (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4(10):981–988

    Article  CAS  PubMed  Google Scholar 

  13. Harrington AW et al (2011) Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 146(3):421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kuruvilla R et al (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118(2):243–255

    Article  CAS  PubMed  Google Scholar 

  15. Riccio A et al (1997) An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277(5329):1097–1100

    Article  CAS  PubMed  Google Scholar 

  16. MacInnis BL, Senger DL, Campenot RB (2003) Spatial requirements for TrkA kinase activity in the support of neuronal survival and axon growth in rat sympathetic neurons. Neuropharmacology 45(7):995–1010

    Article  CAS  PubMed  Google Scholar 

  17. Mok SA, Campenot RB (2007) A nerve growth factor-induced retrograde survival signal mediated by mechanisms downstream of TrkA. Neuropharmacology 52(2):270–278

    Article  CAS  PubMed  Google Scholar 

  18. Mok SA et al (2013) A HaloTag(R) method for assessing the retrograde axonal transport of the p75 neurotrophin receptor and other proteins in compartmented cultures of rat sympathetic neurons. J Neurosci Methods 214(1):91–104

    Article  CAS  PubMed  Google Scholar 

  19. Park JW et al (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1(4):2128–2136

    Article  CAS  PubMed  Google Scholar 

  20. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Andreassi C et al (2010) An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat Neurosci 13(3):291–301

    Article  CAS  PubMed  Google Scholar 

  22. Gumy LF et al (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Taylor AM et al (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Willis D et al (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25(4):778–791

    Article  CAS  PubMed  Google Scholar 

  25. Dieterich DC et al (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103(25):9482–9487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Eng H, Lund K, Campenot RB (1999) Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci 19(1):1–9

    CAS  PubMed  Google Scholar 

  27. Kar AN et al (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33(17):7165–7174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cosker KE et al (2013) Target-derived neurotrophins coordinate transcription and transport of bclw to prevent axonal degeneration. J Neurosci 33(12):5195–5207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Willis DE et al (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178(6):965–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chao JA, Yoon YJ, Singer RH (2012) Imaging translation in single cells using fluorescent microscopy. Cold Spring Harb Perspect Biol 4(11)

    Google Scholar 

  31. Dieterich DC et al (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13(7):897–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6(5):331–338

    Article  CAS  PubMed  Google Scholar 

  33. Wu B, Chao JA, Singer RH (2012) Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 102(12):2936–2944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kimpinski K, Campenot RB, Mearow K (1997) Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. J Neurobiol 33(4):395–410

    Article  CAS  PubMed  Google Scholar 

  35. Pacifici M, Peruzzi F (2012) Isolation and culture of rat embryonic neural cells: a quick protocol. J Vis Exp 63:e3965

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grant RO1 NS050674 to R.A.S. and F31 NS077620 (NINDS) to S.J.F. We thank Katharina Cosker for contributing Campenot figure data and helpful comments, and Sarah Pease for helpful advice with the microfluidics protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind A. Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fenstermacher, S.J., Pazyra-Murphy, M.F., Segal, R.A. (2015). Campenot Cultures and Microfluidics Provide Complementary Platforms for Spatial Study of Dorsal Root Ganglia Neurons. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics