Skip to main content

Characterization of In Vivo DNA-Binding Events of Plant Transcription Factors by ChIP-seq: Experimental Protocol and Computational Analysis

  • Protocol
  • First Online:
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a powerful technique for genome-wide identification of in vivo binding sites of DNA-binding proteins. The technique had been used to study many DNA-binding proteins in a broad variety of species. The basis of the ChIP-seq technique is the ability to covalently cross-link DNA and proteins that are located in very close proximity. This allows the use of an antibody against the (tagged) protein of interest to specifically enrich DNA-fragments bound by this protein. ChIP-seq can be performed using antibodies against the native protein or against tagged proteins. Using a specific antibody against a tag to immunoprecipitate tagged proteins eliminates the need for a specific antibody against the native protein and allows more experimental flexibility. In this chapter we present a complete workflow for experimental procedure and bioinformatic analysis that allows wet-lab biologists to perform and analyze ChIP-seq experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840ā€“852

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Kaufmann K et al (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5(3):457ā€“472

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Kallesen M, Rosen JM (2001) ChIP assay protocol. https://www.bcm.edu/rosenlab/index.cfm?pmid=12979

  4. Li R et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966ā€“1967

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Muino J et al (2011) ChIP-seq analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7(1):11

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Pages H et al. Biostrings: string objects representing biological sequences, and matching algorithms. Available from: citeulike-article-id:11644278

    Google ScholarĀ 

  7. Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178ā€“D1186

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. de Folter S et al (2007) Tagging of MADS domain proteins for chromatin immunoprecipitation. BMC Plant Biol 7(1):47

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  9. Landt SG et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813ā€“1831

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Zeng PY et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41(6):694, 696, 698

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39(5):715ā€“725

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Auerbach RK et al (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106(35):14926ā€“14931

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11s):S22ā€“S32

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Babraham Bioinformatics. FASTQC: a quality control tool for high througput sequencing data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  15. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  16. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrowsā€“Wheeler transform. Bioinformatics 25(14):1754ā€“1760

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Zhang Y et al (2008) Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  18. Rozowsky J et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27(1):66ā€“75

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Ji H et al (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26(11):1293ā€“1300

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Kaufmann K et al (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. Plos Biol 7(4):854ā€“875

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Schiessl K, MuiƱo JM, Sablowski R (2014) Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 111(7):2830ā€“2835

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Outchkourov NS et al (2013) Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function. Cell Rep 3(4):1071ā€“1079

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. MuiƱo JM, Angenent GC, Kaufmann K (2011) Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors. Methods Mol Biol 754:293ā€“305

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  24. Bardet AF et al (2012) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 7(1):45ā€“61

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Mourik, H., MuiƱo, J.M., Pajoro, A., Angenent, G.C., Kaufmann, K. (2015). Characterization of In Vivo DNA-Binding Events of Plant Transcription Factors by ChIP-seq: Experimental Protocol and Computational Analysis. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics