Skip to main content

Editing CCR5: A Novel Approach to HIV Gene Therapy

  • Chapter
  • First Online:
Gene Therapy for HIV and Chronic Infections

Abstract

Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen L, Siliciano RF. Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin Immunol. 2008;122:22–8.

    Article  CAS  PubMed  Google Scholar 

  2. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5:512–7.

    Article  CAS  PubMed  Google Scholar 

  3. Blas-Garcia A, Apostolova N, Esplugues JV. Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: clinical implications. Curr Pharm Des. 2011;17:4076–86.

    Article  CAS  PubMed  Google Scholar 

  4. Domingo P, Estrada V, Lopez-Aldeguer J, Villaroya F, Martinez E. Fat redistribution syndromes associated with HIV-1 infection and combination antiretroviral therapy. AIDS Rev. 2012;14:112–23.

    PubMed  Google Scholar 

  5. Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res. 2010;85:201–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mills EJ, Lester R, Ford N. Adherence to antiretroviral therapy: supervision or support? Lancet Infect Dis. 2012;12:97–8.

    Article  PubMed  Google Scholar 

  7. Klasse PJ. The molecular basis of HIV entry. Cell Microbiol. 2012;14:1183–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Su B, Sun G, Lu D, Xiao J, Hu F, et al. Distribution of three HIV-1 resistance-conferring polymorphisms (SDF1-3'A, CCR2-641, and CCR5-delta32) in global populations. Eur J Hum Genet. 2000;8:975–9.

    Article  CAS  PubMed  Google Scholar 

  9. Martinson JJ, Hong L, Karanicolas R, Moore JP, Kostrikis LG. Global distribution of the CCR2-64I/CCR5-59653T HIV-1 disease-protective haplotype. AIDS. 2000;14:483–9.

    Article  CAS  PubMed  Google Scholar 

  10. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273:1856–62.

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996;2:1240–3.

    Article  CAS  PubMed  Google Scholar 

  12. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–77.

    Article  CAS  PubMed  Google Scholar 

  13. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382:722–5.

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni H, Marconi VC, Agan BK, McArthur C, Crawford G, et al. Role of CCL3L1-CCR5 genotypes in the epidemic spread of HIV-1 and evaluation of vaccine efficacy. PLoS One. 2008;3:e3671.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270:1811–5.

    Article  CAS  PubMed  Google Scholar 

  16. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005;49:4721–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007;81:2359–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Roche M, Jakobsen MR, Sterjovski J, Ellett A, Posta F, et al. HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less-efficient mechanism of gp120-CCR5 engagement that attenuates macrophage tropism. J Virol. 2011;85:4330–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ratcliff AN, Shi W, Arts EJ. HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol. 2012;87:923–34.

    Article  PubMed  Google Scholar 

  20. Fluri S, Ammann R, Luthy AR, Hirt A, Aebi C, et al. High-dose therapy and autologous stem cell transplantation for children with HIV-associated non-Hodgkin lymphoma. Pediatr Blood Cancer. 2007;49:984–7.

    Article  PubMed  Google Scholar 

  21. Krishnan A, Molina A, Zaia J, Nademanee A, Kogut N, et al. Autologous stem cell transplantation for HIV-associated lymphoma. Blood. 2001;98:3857–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gabarre J, Azar N, Autran B, Katlama C, Leblond V. High-dose therapy and autologous haematopoietic stem-cell transplantation for HIV-1-associated lymphoma. Lancet. 2000;355:1071–2.

    Article  CAS  PubMed  Google Scholar 

  23. Campbell P, Iland H, Gibson J, Joshua D. Syngeneic stem cell transplantation for HIV-related lymphoma. Br J Haematol. 1999;105:795–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann C, Stellbrink HJ, Dielschneider T, Degen O, Stoehr A, et al. Adoptive transfer of syngeneic T cells in HIV-1 discordant twins indicates rapid regulation of T-cell homeostasis. Br J Haematol. 2007;136:641–8.

    Article  CAS  PubMed  Google Scholar 

  25. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117:2791–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    Article  PubMed  Google Scholar 

  27. Hutter G, Thiel E. Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. AIDS. 2011;25:273–4.

    Article  PubMed  Google Scholar 

  28. Biti R, Ffrench R, Young J, Bennetts B, Stewart G, et al. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med. 1997;3:252–3.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen OJ, Paolucci S, Bende SM, Daucher M, Moriuchi H, et al. CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Delta32. J Virol. 1998;72:6215–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, et al. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3:338–40.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med. 1997;3:23–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994;91:6064–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 1995;23:5012–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Handel EM, Cathomen T. Zinc-finger nuclease based genome surgery: it's all about specificity. Curr Gene Ther. 2011;11:28–37.

    Article  PubMed  Google Scholar 

  36. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. 2006;172:2391–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26:702–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 2008;26:695–701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Li H, Haurigot V, Doyon Y, Li T, Wong SY, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475:217–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459:437–41.

    Article  CAS  PubMed  Google Scholar 

  41. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459:442–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325:433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 2013;23:159–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108:7052–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Holt N, Wang J, Kim K, Friedman G, Wang X, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28:839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306.

    Article  CAS  PubMed  Google Scholar 

  47. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26:808–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas 3rd CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 2012;9:805–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29:816–23.

    Article  CAS  PubMed  Google Scholar 

  50. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8:765–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

    Article  CAS  PubMed  Google Scholar 

  52. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501.

    Article  CAS  PubMed  Google Scholar 

  53. Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. 2012;23:644–50.

    Article  CAS  PubMed  Google Scholar 

  54. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42(10):6762–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21:1718–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21:1151–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41:e63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77.

    Article  CAS  PubMed  Google Scholar 

  60. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482:331–8.

    Article  CAS  PubMed  Google Scholar 

  61. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  62. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10:957–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jinek M, East A, Cheng A, Lin S, Ma E, et al. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  66. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42(11):7473–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Symons J, Vandekerckhove L, Hutter G, Wensing AM, van Ham PM, et al. Dependence on the CCR5 co-receptor for viral replication explains the lack of rebound of CXCR4-predicted HIV-variants in the Berlin patient. Clin Infect Dis. 2014;59(4):596–600.

    Article  CAS  PubMed  Google Scholar 

  74. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Peterson CW, Younan P, Jerome KR, Kiem HP. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther. 2013;20:695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Morgan RA, Walker R, Carter CS, Natarajan V, Tavel JA, et al. Preferential survival of CD4+ T lymphocytes engineered with anti-human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum Gene Ther. 2005;16:1065–74.

    Article  CAS  PubMed  Google Scholar 

  77. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15:285–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther. 2004;15:251–62.

    Article  CAS  PubMed  Google Scholar 

  79. Truong L, Wood T, Henley J, Ya-Li L, Kim K, et al. Autologous hematopoietic stem/progenitor cell (HSPC) therapy for monogenic blood disorders: scalable, cGMP-compliant process for generating highly efficient genome edited HSPC. Blood. 2013;122:4213.

    Google Scholar 

  80. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother. 2002;25:243–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Yuan J, Wang J, Crain K, Fearns C, Kim KA, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther. 2012;20:849–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–8.

    Article  CAS  PubMed  Google Scholar 

  84. Qu X, Wang P, Ding D, Li L, Wang H, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41:7771–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Cathomen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Cornu, T.I., Mussolino, C., Bloom, K., Cathomen, T. (2015). Editing CCR5: A Novel Approach to HIV Gene Therapy. In: Berkhout, B., Ertl, H., Weinberg, M. (eds) Gene Therapy for HIV and Chronic Infections. Advances in Experimental Medicine and Biology(), vol 848. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2432-5_6

Download citation

Publish with us

Policies and ethics