Skip to main content

Characterization of Protein-Protein Interactions by Isothermal Titration Calorimetry

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

The analysis of protein-protein interactions has attracted the attention of many researchers from both a fundamental point of view and a practical point of view. From a fundamental point of view, the development of an understanding of the signaling events triggered by the interaction of two or more proteins provides key information to elucidate the functioning of many cell processes. From a practical point of view, understanding protein-protein interactions at a quantitative level provides the foundation for the development of antagonists or agonists of those interactions. Isothermal Titration Calorimetry (ITC) is the only technique with the capability of measuring not only binding affinity but the enthalpic and entropic components that define affinity. Over the years, isothermal titration calorimeters have evolved in sensitivity and accuracy. Today, TA Instruments and MicroCal market instruments with the performance required to evaluate protein-protein interactions. In this methods paper, we describe general procedures to analyze heterodimeric (porcine pancreatic trypsin binding to soybean trypsin inhibitor) and homodimeric (bovine pancreatic α-chymotrypsin) protein associations by ITC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    Article  CAS  PubMed  Google Scholar 

  2. Zinzalla G, Thurston DE (2009) Targeting protein-protein interactions for therapeutic intervention: a challenge for future. Future Med Chem 1:65–93

    Article  CAS  PubMed  Google Scholar 

  3. Falconer RJ, Penkova A, Jelesarov I, Collins BM (2010) Survey of the year 2008: Applications of isothermal titration calorimetry. J Mol Recognit 23:395–413

    Article  CAS  PubMed  Google Scholar 

  4. Falconer RJ, Collins BM (2011) Survey of the year 2009: Applications of isothermal titration calorimetry. J Mol Recognit 24:1–16

    Article  CAS  PubMed  Google Scholar 

  5. Ghai R, Falconer RJ, Collins BM (2012) Applications of isothermal titration calorimetry in pure and applied research - Survey of the literature from 2010. J Mol Recognit 25:32–52

    Article  CAS  PubMed  Google Scholar 

  6. Banner DW, D'Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73:431–445

    Article  CAS  PubMed  Google Scholar 

  7. Shibata H, Yoshioka Y, Ohkawa A, Minowa K, Mukai Y, Abe Y, Taniai M, Nomura T, Kayamuro H, Nabeshi H, Sugita T, Imai S, Nagano K, Yoshikawa T, Fujita T, Nakagawa S, Yamamoto A, Ohta T, Hayakawa T, Mayumi T, Vandenabeele P, Aggarwal BB, Nakamura T, Yamagata Y, Tsunoda S, Kamada H, Tsutsumi Y (2008) Creation and x-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-alpha antagonist. J Biol Chem 283:998–1007

    Article  CAS  PubMed  Google Scholar 

  8. Hage T, Sebald W, Reinemer P (1999) Crystal structure of the interleukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell 97:271–281

    Article  CAS  PubMed  Google Scholar 

  9. Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477–1480

    Article  CAS  PubMed  Google Scholar 

  10. Philo JS, Aoki KH, Arakawa T, Narhi LO, Wen J (1996) Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry 35:1681–1691

    Article  CAS  PubMed  Google Scholar 

  11. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395:511–516

    Article  CAS  PubMed  Google Scholar 

  12. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 17:7040–7046

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  14. Sundstrom M, Lundqvist T, Rodin J, Giebel LB, Milligan D, Norstedt G (1996) Crystal structure of an antagonist mutant of human growth hormone, G120R, in complex with its receptor at 2.9 Å resolution. J Biol Chem 271:32197–32203

    Article  CAS  PubMed  Google Scholar 

  15. Walsh ST, Jevitts LM, Sylvester JE, Kossiakoff AA (2003) Site2 binding energetics of the regulatory step of growth hormone-induced receptor homodimerization. Protein Sci 12:1960–1970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Abbate EA, Berger JM, Botchan MR (2004) The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 18:1981–1996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (1997) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci U S A 97:9026–9031

    Article  Google Scholar 

  18. Gift SK, Zentner IJ, Schön A, McFadden K, Umashankara M, Rajagopal S, Contarino M, Duffy C, Courter JR, Zhang MY, Gershoni JM, Cocklin S, Dimitrov DS, Smith AB 3rd, Freire E, Chaiken IM (2001) Conformational and structural features of HIV-1 gp120 underlying the dual receptor antagonism by cross-reactive neutralizing antibody m18. Biochemistry 50:2756–2768

    Article  Google Scholar 

  19. Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PW, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J (2002) HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420:678–682

    Article  CAS  PubMed  Google Scholar 

  20. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–959A

    Article  CAS  Google Scholar 

  21. Doyle ML (1997) Characterization of binding interactions by isothermal titration. Curr Opin Biotechnol 8:31–35

    Article  CAS  PubMed  Google Scholar 

  22. Jelessarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    Article  Google Scholar 

  23. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    Article  CAS  PubMed  Google Scholar 

  24. Parker MH, Lunney EA, Ortwine DF, Pavlovsky AG, Humblet C, Brouillette CG (1999) Analysis of the binding of hydroxamic acid and carboxylic acid inhibitors to the stromelysin-1 (matrix metalloproteinase-3) catalytic domain by isothermal titration calorimetry. Biochemistry 38:13592–13601

    Article  CAS  PubMed  Google Scholar 

  25. Velazquez-Campoy A, Todd MJ, Freire E (2000) HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Biochemistry 39:2201–2207

    Article  CAS  PubMed  Google Scholar 

  26. Todd MJ, Luque I, Velazquez-Campoy A, Freire E (2000) Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant. Biochemistry 39:11876–11883

    Article  CAS  PubMed  Google Scholar 

  27. Velazquez-Campoy A, Kiso Y, Freire E (2001) The binding energetics of first- and second-generation HIV-1 protease inhibitors: Implications for drug design. Arch Biochem Biophys 390:169–175

    Article  CAS  PubMed  Google Scholar 

  28. Velazquez-Campoy A, Freire E (2001) Incorporating target heterogeneity in drug design. J Cell Biochem S37:82–88

    Article  Google Scholar 

  29. Ward WH, Holdgate GA (2001) Isothermal titration calorimetry in drug discovery. Prog Med Chem 38:309–376

    Article  CAS  PubMed  Google Scholar 

  30. Velazquez-Campoy A, Muzammil S, Ohtaka H, Schön A, Vega S, Freire E (2003) Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr Drug Targets Infect Disord 3:311–328

    Article  CAS  PubMed  Google Scholar 

  31. Vega S, Kang LW, Velazquez-Campoy A, Kiso Y, Amzel LM, Freire E (2004) A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Proteins 55:594–602

    Article  CAS  PubMed  Google Scholar 

  32. Ohtaka H, Muzammil S, Schön A, Velazquez-Campoy A, Vega S, Freire E (2004) Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets. Int J Biochem Cell Biol 36:1787–1799

    Article  CAS  PubMed  Google Scholar 

  33. Ohtaka H, Freire E (2005) Adaptive inhibitors of the HIV-1 protease. Prog Biophys Mol Biol 88:193–208

    Article  CAS  PubMed  Google Scholar 

  34. Ruben AJ, Kiso Y, Freire E (2006) Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem Biol Drug Des 67:2–4

    Article  CAS  PubMed  Google Scholar 

  35. Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Amzel LM, Freire E (2007) Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem Biol Drug Des 69:413–422

    Article  CAS  PubMed  Google Scholar 

  36. Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13:869–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Freire E (2009) A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des 74:468–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27

    Article  CAS  PubMed  Google Scholar 

  39. Kawasaki Y, Freire E (2011) Finding a better path to drug selectivity. Drug Discov Today 16:985–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Schön A, Madani N, Smith AB, Lalonde JM, Freire E (2011) Some binding-related drug properties are dependent on thermodynamic signature. Chem Biol Drug Des 77:161–165

    Article  PubMed Central  PubMed  Google Scholar 

  41. Burrows SD, Doyle ML, Murphy KP, Franklin SG, White JR, Brooks I, McNulty DE, Scott MO, Knutson JR, Porter D, Young PR, Hensley P (1994) Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry 33:12741–12745

    Article  CAS  PubMed  Google Scholar 

  42. Czypionka A, de los Paños OR, Mateu MG, Barrera FN, Hurtado-Gomez E, Gomez J, Vidal M, Neira JL (2007) The isolated C-terminal domain of Ring1B is a dimer made of stable, well-structured monomers. Biochemistry 46:12764–12776

    Article  CAS  PubMed  Google Scholar 

  43. Bello M, Perez-Hernandez G, Fernandez-Velasco DA, Arreguin-Espinosa R, Garcia-Hernandez E (2008) Energetics of protein homodimerization: effects of water sequestering on the formation of beta-lactoglobulin dimer. Proteins 70:1475–1487

    Article  CAS  PubMed  Google Scholar 

  44. Wiseman T, Williston S, Brandts JF, Nin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  CAS  PubMed  Google Scholar 

  45. Doyle ML, Louie GL, Dal Monte PR, Sokoloski TD (1995) Tight binding affinities determined from linkage to protons by titration calorimetry. Methods Enzymol 259:183–194

    Article  CAS  PubMed  Google Scholar 

  46. Baker BM, Murphy KP (1996) Evaluation of linked protonation effects in protein binding using isothermal titration calorimetry. Biophys J 71:2049–2055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Doyle ML, Hensley P (1998) Tight ligand binding affinities determined from thermodynamic linkage to temperature by titration calorimetry. Methods Enzymol 295:88–99

    Article  CAS  PubMed  Google Scholar 

  48. Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277:260–266

    Article  CAS  PubMed  Google Scholar 

  49. Velazquez-Campoy A, Freire E (2005) ITC in the post-genomic era…? Priceless. Biophys Chem 115:115–124

    Article  CAS  PubMed  Google Scholar 

  50. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1:186–191

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y-L, Zhang Z-Y (1998) Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Anal Biochem 261:139–148

    Article  CAS  PubMed  Google Scholar 

  52. Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol Chapter 17, Unit 17.8

    Google Scholar 

  53. Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    Article  CAS  PubMed  Google Scholar 

  54. Gomez J, Hilser VJ, Freire E (1995) The heat capacity of proteins. Proteins 22:404–412

    Article  CAS  PubMed  Google Scholar 

  55. Hinz HJ, Shiao DDF, Sturtevant JM (1971) Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry 10:1347–1352

    Article  CAS  PubMed  Google Scholar 

  56. Biltonen RL, Langerman N (1979) Microcalorimetry for biological chemistry: experimental design, data analysis and interpretation. Methods Enzymol 61:287–319

    Article  CAS  PubMed  Google Scholar 

  57. Gomez J, Freire E (1995) Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J Mol Biol 252:337–350

    Article  CAS  PubMed  Google Scholar 

  58. Baker BM, Murphy KP (1997) Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol 268:557–569

    Article  CAS  PubMed  Google Scholar 

  59. Velazquez-Campoy A, Luque I, Todd MJ, Milutinovich M, Kiso Y, Freire E (2000) Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci 9:1801–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science, Mill Valley, CA

    Google Scholar 

  61. Edgcomb SP, Baker BM, Murphy KP (2000) The energetics of phosphate binding to a protein complex. Protein Sci 9:927–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Patel CN, Noble SM, Weatherly GT, Tripathy A, Winzor DJ, Pielak GJ (2002) Effects of molecular crowding by saccharides on α-chymotrypsin dimerization. Protein Sci 11:997–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Freire E, Kawasaki Y, Velazquez-Campoy A, Schön A (2011) Characterisation of ligand binding by calorimetry. In: Podjarny A, Dejaegere A, Kieffer B (eds) Biophysical approaches determining ligand binding to biomolecular targets. Detection, measurement and modeling. RSC Publishing, Cambridge

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (MCB0641252) and the National Institutes of Health (GM56550 and GM57144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Velazquez-Campoy, A., Leavitt, S.A., Freire, E. (2015). Characterization of Protein-Protein Interactions by Isothermal Titration Calorimetry. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics