Skip to main content

Informing Saccharide Structural NMR Studies with Density Functional Theory Calculations

  • Protocol
  • First Online:
Glycoinformatics

Abstract

Density functional theory (DFT) is a powerful computational tool to enable structural interpretations of NMR spin–spin coupling constants ( J-couplings) in saccharides, including the abundant 1H–1H ( J HH), 13C–1H ( J CH), and 13C–13C ( J CC) values that exist for coupling pathways comprised of 1–4 bonds. The multiple hydroxyl groups in saccharides, with their attendant lone-pair orbitals, exert significant effects on J-couplings that can be difficult to decipher and quantify without input from theory. Oxygen substituent effects are configurational and conformational in origin (e.g., axial/equatorial orientation of an OH group in an aldopyranosyl ring; C–O bond conformation involving an exocyclic OH group). DFT studies shed light on these effects, and if conducted properly, yield quantitative relationships between a specific J-coupling and one or more conformational elements in the target molecule. These relationships assist studies of saccharide structure and conformation in solution, which are often challenged by the presence of conformational averaging. Redundant J-couplings, defined as an ensemble of J-couplings sensitive to the same conformational element, are particularly helpful when the element is flexible in solution (i.e., samples multiple conformational states on the NMR time scale), provided that algorithms are available to convert redundant J-values into meaningful conformational models. If the latter conversion is achievable, the data can serve as a means of testing, validating, and refining theoretical methods like molecular dynamics (MD) simulations, which are currently relied upon heavily to assign conformational models of saccharides in solution despite a paucity of experimental data needed to independently validate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Redundancy” is defined herein as access to multiple NMR J-couplings that report on the same molecular torsion angle, θ. Furthermore, plots of J-coupling magnitude as a function of θ should not be superimposable, but rather should be phase-shifted so as to maximize the ability of these multiple couplings to discrimiate between different conformational models. If the plots overlap, the use of redundant J-couplings will not improve conformational analyses appreciably.

References

  1. Serianni AS, Pierce J, Huang SG, Barker R (1982) Anomerization of furanose sugars: kinetics of ring-opening reactions by 1H and 13C saturation-transfer NMR spectroscopy. J Am Chem Soc 104:4037–4044

    Article  CAS  Google Scholar 

  2. Hu X, Zhang W, Carmichael I, Seriani AS (2010) Amide cis-trans isomerization in aqueous solutions of methyl N-formyl-D-glucosaminides and methyl N-acetyl-D-glucosaminides: chemical equilibria and exchange kinetics. J Am Chem Soc 132:4641–4652

    Article  CAS  PubMed  Google Scholar 

  3. Pereira CS, Kony D, Baron R, Müller M, van Gunsteren WF, Hünenberger PH (2006) Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. Biophys J 90:4337–4344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kowalewski J, Mäler L, Widmalm G (1998) NMR relaxation studies of oligosaccharides in solution: reorientational dynamics and internal motion. J Mol Liq 78:255–261

    Article  CAS  Google Scholar 

  6. Almond A, DeAngelis PL, Blundell CD (2005) Dynamics of hyaluronan oligosaccharides revealed by 15N relaxation. J Am Chem Soc 127:1086–1087

    Article  CAS  PubMed  Google Scholar 

  7. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728

    Article  CAS  PubMed  Google Scholar 

  8. Taubert S, Konschin HK, Sundholm D (2005) Computational studies of 13C NMR chemical shifts of saccharides. Phys Chem Chem Phys 7:2561–2569

    Article  CAS  PubMed  Google Scholar 

  9. Bose-Basu B, Zajicek J, Bondo G, Zhao S, Kubsch M, Carmichael I, Serianni AS (2000) Deuterium nuclear spin-lattice relaxation times and quadrupolar coupling constants in isotopically labeled saccharides. J Magn Reson 144:207–216

    Article  CAS  PubMed  Google Scholar 

  10. Bryce DL, Grishaev A, Bax A (2005) Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy. J Am Chem Soc 127:7387–7396

    Article  CAS  PubMed  Google Scholar 

  11. Lemieux RU, Kullnig RK, Bernstein HJ, Schneider WG (1958) Configurational effects on the proton magnetic resonance spectra of six-membered ring compounds. J Am Chem Soc 80:6098–6105

    Article  CAS  Google Scholar 

  12. Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15

    Article  CAS  Google Scholar 

  13. Günther H (1995) NMR spectroscopy: basic principles, concepts and applications in chemistry, 2nd edn. Wiley, Chichester, pp 69–134

    Google Scholar 

  14. Snyder JR, Serianni AS (1986) D-idose: a one- and two-dimensional NMR investigation of solution composition and conformation. J Org Chem 51:2694–2702

    Article  CAS  Google Scholar 

  15. Stenutz R, Carmichael I, Widmalm G, Serianni AS (2002) Hydroxymethyl group conformation in saccharides: structural dependencies of 2JHH, 3JHH, and 1JCH spin–spin coupling constants. J Org Chem 67:949–958

    Article  CAS  PubMed  Google Scholar 

  16. Zhao H, Pan Q, Zhang W, Carmichael I, Serianni AS (2007) DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution. J Org Chem 72:7071–7082

    Article  CAS  PubMed  Google Scholar 

  17. Otter A, Bundle DR (1995) Long-range 4J and 5J, including interglycosidic correlations in gradient-enhanced homonuclear COSY experiments of oligosaccharides. J Magn Reson B109:194–201

    Article  Google Scholar 

  18. Barfield M, Dean AM, Fallick CJ, Spear RJ, Sternhell S, Westerman PW (1975) Conformational dependence and mechanisms for long-range hydrogen-hydrogen coupling constants over four bonds. J Am Chem Soc 97:1482–1492

    Article  CAS  Google Scholar 

  19. Thibaudeau C, Stenutz R, Hertz B, Klepach T, Zhao S, Wu Q, Carmichael I, Serianni AS (2004) Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings. J Am Chem Soc 126:15668–15685

    Article  CAS  PubMed  Google Scholar 

  20. Maiti NC, Zhu Y, Carmichael I, Serianni AS, Anderson VE (2006) 1JCH correlates with alcohol hydrogen bond strength. J Org Chem 71:2878–2880

    Article  CAS  PubMed  Google Scholar 

  21. Jardetzky O (1980) On the nature of molecular conformations inferred from high-resolution NMR. Biochim Biophys Acta 621:227–232

    Article  CAS  PubMed  Google Scholar 

  22. Bukowski R, Morris LC, Woods RJ, Weimar T (2001) Synthesis and conformational analysis of the T-antigen disaccharide β-D-Gal-(1→3)-β-D-GalNAcOMe. Eur J Org Chem 2001:2697–2705

    Article  Google Scholar 

  23. Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1998) The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. Eur J Biochem 258:372–386

    Article  CAS  PubMed  Google Scholar 

  24. Dowd MK, Kiely DE, Zhang J (2011) Monte Carlo-based searching as a tool to study carbohydrate structure. Carbohydr Res 346:1140–1148

    Article  CAS  PubMed  Google Scholar 

  25. Woods RJ (1998) Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconj J 15:209–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hsu C-H, Hung S-C, Wu C-Y, Wong C-H (2011) Toward automated oligosaccharide synthesis. Angew Chem Int Ed 50:11872–11923

    Article  CAS  Google Scholar 

  27. Zhang W, Oliver AG, Serianni AS (2010) Methyl β-D-galactopyranosyl-(1→4)-β-D-allopyranoside tetrahydrate. Acta Crystallogr C C66:o484–o487

    Article  Google Scholar 

  28. Stenutz R, Shang M, Serianni AS (1999) Methyl β-Lactoside (methyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside) methanol solvate. Acta Crystallogr C C55:1719–1721

    Article  CAS  Google Scholar 

  29. Zhang W, Oliver AG, Vu HM, Duman JG, Serianni AS (2012) Methyl 4-O-β-D-mannopyranosyl β-D-xylopyranoside. Acta Crystallogr C C68:o502–o506

    Article  Google Scholar 

  30. Ham JT, Williams DG (1970) The crystal and molecular structure of methyl β-cellobioside-methanol. Acta Crystallogr C B26:1373–1383

    Article  Google Scholar 

  31. Pan Q, Noll BC, Serianni AS (2005) Methyl 4-O-β-D-galactopyranosyl α-D-glycopyranoside (methyl α-lactoside). Acta Crystallogr C C61:o674–o677

    Article  CAS  Google Scholar 

  32. Zhang W, Oliver AG, Serianni AS (2012) Disorder and conformational analysis of methyl β-D-galactopyranosyl-(1→4)-β-D-xylopyranoside. Acta Crystallogr C C68:o7–o11

    Article  Google Scholar 

  33. Hu X, Pan Q, Noll BC, Oliver AG, Serianni AS (2010) Methyl 4-O-β-D-galactopyranosyl α-D-mannopyranoside methanol 0.375-solvate. Acta Crystallogr C C66:o67–o70

    Article  Google Scholar 

  34. Pachler KGR (1971) Extended Hückel theory MO calculations of proton-proton coupling constants – II: the effect of substituents on vicinal couplings in monosubstituted ethanes. Tetrahedron 27:187–199

    Article  CAS  Google Scholar 

  35. Galan MC, Venot AP, Glushka J, Imberty A, Boons G-J (2002) Alpha-(2→6)-sialyltransferase-catalyzed sialylations of conformationally constrained oligosaccharides. J Am Chem Soc 124:5964–5973

    Article  CAS  PubMed  Google Scholar 

  36. Hohenberg P, Kohn W (1964) Inhomogeneous electron. Gas Phys Rev 136:B864–B871

    Article  Google Scholar 

  37. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  38. Perdew JP, Wang Y (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33:8800–8802

    Article  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Pople JA, McIver JW Jr, Ostlund NS (1967) Finite perturbation theory for nuclear spin coupling constants. Chem Phys Lett 1:465–466

    Article  CAS  Google Scholar 

  42. Pople JA, McIver JW Jr, Ostlund NS (1968) Self-consistent perturbation theory. I. Finite perturbation methods. J Chem Phys 49:2960–2964

    Article  CAS  Google Scholar 

  43. Pople JA, McIver JW Jr, Ostlund NS (1968) Self-consistent perturbation theory. II. Nuclear spin coupling constants. J Chem Phys 49:2965–2970

    Article  CAS  Google Scholar 

  44. Ramsey NF (1953) Electron coupled interactions between nuclear spins in molecules. Phys Rev 91:303–307

    Article  CAS  Google Scholar 

  45. Helgaker T, Watson M, Handy NC (2000) Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 113:9402–9409

    Article  CAS  Google Scholar 

  46. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab inito molecular potentials for the provision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  47. Cancés E, Mennucci B (1998) New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem 23:309–326

    Article  Google Scholar 

  48. Cancés E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  49. Mennucci B, Cancés E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  50. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  51. Bose B, Zhao S, Stenutz R, Cloran F, Bondo PB, Bondo G, Hertz B, Carmichael I, Serianni AS (1998) Three-bond C-O-C-C spin-coupling constants in carbohydrates: development of a Karplus relationship. J Am Chem Soc 120:11158–11173

    Article  CAS  Google Scholar 

  52. Haasnoot CAG, de Leeuw FAAM, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities—I: an empirical generalization of the Karplus equation. Tetrahedron 36:2783–2792

    Article  CAS  Google Scholar 

  53. Altona C, Ippel JH, Hoekzema AJAW, Erkelens C, Groesbeek M, Donders LA (1989) Relationship between proton-proton NMR coupling constants and substituent electronegativities. V. Empirical substituent constants deduced from ethanes and propanes. Magn Reson Chem 27:564–576

    Article  CAS  Google Scholar 

  54. Altona C, Francke R, de Haan R, Ippel JH, Daalmans GJ, Hoekzema AJAW, van Wijk J (1994) Empirical group electronegativities for vicinal NMR proton-proton couplings along a C-C bond: solvent effects and reparameterization of the Haasnoot equation. Magn Reson Chem 32:670–678

    Article  CAS  Google Scholar 

  55. Carmichael I, Chipman DM, Podlasek CA, Serianni AS (1993) Torsional effects on the one-bond 13C-13C spin coupling constant in ethylene glycol: insights into the behavior of 1JCC in carbohydrates. J Am Chem Soc 115:10863–10870

    Article  CAS  Google Scholar 

  56. Church T, Carmichael I, Serianni AS (1996) Two-bond 13C-13C spin-coupling constants in carbohydrates: effect of structure on coupling magnitude and sign. Carbohydr Res 280:177–186

    Article  CAS  Google Scholar 

  57. Serianni AS, Bondo PB, Zajicek J (1996) Verification of the projection resultant method for two-bond 13C-13C coupling sign determinations in carbohydrates. J Magn Reson Ser B 112:69–74

    Article  CAS  Google Scholar 

  58. Klepach T, Serianni AS (unpublished results)

    Google Scholar 

  59. Cloran F, Carmichael I, Serianni AS (2000) 2JCOC spin-spin coupling constants across glycosidic linkages exhibit a valence bond-angle dependence. J Am Chem Soc 122:396–397

    Article  CAS  Google Scholar 

  60. Cloran F, Carmichael I, Serianni AS (1999) Density functional calculations on disaccharide mimics: studies of molecular geometries and trans-O-glycosidic 3JCOCH and 3JCOCC spin-couplings. J Am Chem Soc 121:9843–9851

    Article  CAS  Google Scholar 

  61. Bose-Basu B, Klepach T, Bondo G, Bondo PB, Zhang W, Carmichael I, Serianni AS (2007) 13C–13C NMR spin-spin coupling constants in saccharides: structural correlations involving all carbons in aldohexopyranosyl rings. J Org Chem 72:7511–7522

    Article  CAS  PubMed  Google Scholar 

  62. Müller N, Pritchard DE (1959) C13 splittings in proton magnetic resonance spectra. I. Hydrocarbons. J Chem Phys 31:768–771

    Article  Google Scholar 

  63. Serianni AS, Wu J, Carmichael I (1995) One-Bond 13C-1H spin-coupling constants in aldofuranosyl rings: effect of conformation on coupling magnitude. J Am Chem Soc 117:8645–8650

    Article  CAS  Google Scholar 

  64. Bock K, Pedersen C (1977) Two- and three-bond 13C-1H couplings in some carbohydrates. Acta Chem Scand B 31:354–358

    Article  Google Scholar 

  65. Klepach TE, Carmichael I, Serianni AS (2005) Geminal 2JCCH spin-spin coupling constants as probes of the ϕ glycosidic torsion angle in oligosaccharides. J Am Chem Soc 127:9781–9793

    Article  CAS  PubMed  Google Scholar 

  66. Podlasek CA, Wu J, Stripe WA, Bondo PB, Serianni AS (1995) [13C]-Enriched methyl aldopyranosides: structural interpretations of 13C–1H spin-coupling constants and 1H chemical shifts. J Am Chem Soc 117:8635–8644

    Article  CAS  Google Scholar 

  67. ChemBio3D. www.cambridgesoft.com/Ensemble_for_Biology/ChemBio3D/Default.aspx

    Google Scholar 

  68. Spartan. www.wavefun.com/products/spartan.html

    Google Scholar 

  69. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  70. GAMESS. www.msg.ameslab.gov/gamess/

    Google Scholar 

  71. Jaguar. www.schrodinger.com/products/14/7/

    Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford, CT

    Google Scholar 

  73. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  74. York DM, Karplus M (1999) A smooth solvation potential based on the conductor-like screening model. J Phys Chem A 103:11060–11079

    Article  CAS  Google Scholar 

  75. Sychrovsky V, Gräfenstein J, Cremer D (2000) Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory. J Chem Phys 113:3530–3547

    Article  CAS  Google Scholar 

  76. Carmichael I (1993) Ab initio quadratic configuration interaction calculation of indirect NMR spin-spin coupling constants. J Phys Chem 97:1789–1792

    Article  CAS  Google Scholar 

  77. King-Morris MJ, Serianni AS (1987) 13C NMR studies of [1-13C] aldoses: empirical rules correlating pyranose ring configuration and conformation with 13C chemical shifts and 13C-13C spin couplings. J Am Chem Soc 109:3501–3508

    Article  CAS  Google Scholar 

  78. Wu J, Bondo PB, Vuorinen T, Serianni A (1992) 13C–13C spin coupling constants in aldoses enriched with 13C at the terminal hydroxymethyl carbon: effect of coupling pathway structure on JCC in carbohydrates. J Am Chem Soc 114:3499–3505

    Article  CAS  Google Scholar 

  79. Zhao H, Carmichael I, Serianni AS (2008) Oligosaccharide trans-glycoside 3JCOCC Karplus curves are not equivalent: effect of internal electronegative substituents. J Org Chem 73:3255–3257

    Article  CAS  PubMed  Google Scholar 

  80. Serianni AS, Podlasek CA (1994) 13C-1H spin-coupling constants in carbohydrates: magnitude and sign determinations via 2D NMR methods. Carbohydr Res 259:277–282

    Article  CAS  Google Scholar 

  81. Muslim A-M, McNamara JP, Abdel-Aal H, Hillier IH, Bryce RA (2006) QM/MM simulations of carbohydrates. In: NMR spectroscopy and computer modeling of carbohydrates. ACS Symposium Series 2006, vol 930. American Chemical Society. pp 186–202

    Google Scholar 

  82. Thureau P, Mollica G, Ziarelli F, Viel S (2013) Selective measurements of long-range homonuclear J-couplings in solid-state NMR. J Magn Reson 231:90–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony S. Serianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Klepach, T. et al. (2015). Informing Saccharide Structural NMR Studies with Density Functional Theory Calculations. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics