Skip to main content

Transplantable Mouse Tumor Models of Breast Cancer Metastasis

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Metastatic spread of cancer cells is the main cause of death of breast cancer patients. A better understanding of the molecular mechanism of cancer metastasis is essential for the development of novel and effective therapies. The biological complexity of the metastasis process requires the combination of multiple experimental systems to model distinct steps of cancer metastasis. Several animal models have been generated to mimic the process of breast cancer metastasis, with unique advantages and drawbacks of each model. In this chapter, we describe transplantable xenograft and allograft methods to introduce human or mouse breast tumor cells into mice in order to generate spontaneous and experimental metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19(11):1450–1464. doi:10.1038/nm.3391

    Article  CAS  PubMed  Google Scholar 

  2. Vanharanta S, Massague J (2013) Origins of metastatic traits. Cancer Cell 24(4):410–421. doi:10.1016/j.ccr.2013.09.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sethi N, Kang Y (2011) Unravelling the complexity of metastasis - molecular understanding and targeted therapies. Nat Rev Cancer 11(10):735–748. doi:10.1038/nrc3125

    Article  CAS  PubMed  Google Scholar 

  4. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. doi:10.1016/j.cell.2011.09.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. doi:10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  6. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658. doi:10.1038/nrc2192

    Article  CAS  PubMed  Google Scholar 

  7. Heyer J, Kwong LN, Lowe SW, Chin L (2010) Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 10(7):470–480. doi:10.1038/nrc2877

    Article  CAS  PubMed  Google Scholar 

  8. McClatchey AI (1999) Modeling metastasis in the mouse. Oncogene 18(38):5334–5339. doi:10.1038/sj.onc.1203086

    Article  CAS  PubMed  Google Scholar 

  9. Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15(3):272–306

    Article  CAS  PubMed  Google Scholar 

  10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  11. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524. doi:10.1038/nature03799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523. doi:10.1093/carcin/bgh261

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A, Gutierrez C, Huang J, Mao S, Pavlick AC, Froehlich AM, Wu MF, Tsimelzon A, Hilsenbeck SG, Chen ES, Zuloaga P, Shaw CA, Rimawi MF, Perou CM, Mills GB, Chang JC, Lewis MT (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897. doi:10.1158/0008-5472.CAN-12-4081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520. doi:10.1038/nm.2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Smith HA, Kang Y (2013) The metastasis-promoting roles of tumor-associated immune cells. J Mol Med 91(4):411–429. doi:10.1007/s00109-013-1021-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25(24):2559–2572. doi:10.1101/gad.169029.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Li Y, Hively WP, Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19(8):1002–1009. doi:10.1038/sj.onc.1203273

    Article  CAS  PubMed  Google Scholar 

  19. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489

    Article  CAS  PubMed  Google Scholar 

  20. Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. Current protocols in immunology / edited by John E Coligan [et al] Chapter 20:Unit 20 22. doi:10.1002/0471142735.im2002s39

  21. Kang Y (2009) Analysis of cancer stem cell metastasis in xenograft animal models. Methods Mol Biol 568:7–19. doi:10.1007/978-1-59745-280-9_2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brian Ell, Hanqiu Zheng, and Mark Esposito for comments and suggestions for the manuscript. Research in our laboratory is supported by grants from the Brewster Foundation, the Department of Defense (BC123187) and the National Institutes of Health (R01CA134519 and R01CA141062) to Y.K. R.C. is a recipient of a DOD postdoctoral fellowship (W81XWH-11-1-0681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chakrabarti, R., Kang, Y. (2015). Transplantable Mouse Tumor Models of Breast Cancer Metastasis. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics