Skip to main content

Computational Modeling of Peptide–Aptamer Binding

  • Protocol
  • First Online:
Computational Peptidology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

Evolution is the progressive process that holds each living creature in its grasp. From strands of DNA evolution shapes life with response to our ever-changing environment and time. It is the continued study of this most primitive process that has led to the advancement of modern biology. The success and failure in the reading, processing, replication, and expression of genetic code and its resulting biomolecules keep the delicate balance of life. Investigations into these fundamental processes continue to make headlines as science continues to explore smaller scale interactions with increasing complexity. New applications and advanced understanding of DNA, RNA, peptides, and proteins are pushing technology and science forward and together. Today the addition of computers and advances in science has led to the fields of computational biology and chemistry. Through these computational advances it is now possible not only to quantify the end results but also visualize, analyze, and fully understand mechanisms by gaining deeper insights. The biomolecular motion that exists governing the physical and chemical phenomena can now be analyzed with the advent of computational modeling. Ever-increasing computational power combined with efficient algorithms and components are further expanding the fidelity and scope of such modeling and simulations. This chapter discusses computational methods that apply biological processes, in particular computational modeling of peptide–aptamer binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain KK (2010) The handbook of biomarkers. Springer, New York, NY

    Book  Google Scholar 

  2. Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors 8:4296–4307

    Article  CAS  PubMed Central  Google Scholar 

  3. Erickson D, Mandal S, Yang A, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4:33–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  5. Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28:3011–3016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319:244–250

    Article  CAS  PubMed  Google Scholar 

  7. Clark SL, Remcho VT (2002) Aptamers as analytical reagents. Electrophoresis 23:1335–1340

    Article  CAS  PubMed  Google Scholar 

  8. Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332

    Article  CAS  Google Scholar 

  9. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550

    Article  CAS  PubMed  Google Scholar 

  10. James W (2001) Nucleic acid and polypeptide aptamers: a powerful approach to ligand discovery. Curr Opin Pharmacol 1:540–546

    Article  CAS  PubMed  Google Scholar 

  11. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX – a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  PubMed  Google Scholar 

  12. Baines IC, Colas P (2006) Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 11:334–341

    Article  CAS  PubMed  Google Scholar 

  13. Ferreira CS, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301

    Article  CAS  PubMed  Google Scholar 

  14. Ferreira C, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S (2008) DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 390:1039–1050

    Article  CAS  PubMed  Google Scholar 

  15. Tramontano A (2006) Protein structure prediction: concepts and applications. Wiley-VCH, Weinheim

    Google Scholar 

  16. Bader DA (2004) Computational biology and high-performance computing. Commun ACM 47:34–41

    Article  Google Scholar 

  17. Schneider G, Baringhaus K-H (2008) Molecular design: concepts and applications. John Wiley & Sons, New York, NY

    Google Scholar 

  18. Gomperts R, Renner E, Mehta M (2005) Enabling technologies for innovative new materials. Am Lab 37:12–14

    CAS  Google Scholar 

  19. Sim AYL, Minary P, Levitt M (2012) Modeling nucleic acids. Curr Opin Struct Biol 22:273–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Berg BA (2004) Markov chain Monte Carlo simulations and their statistical analysis: with web-based fortran code. World Scientific, Hackensack, NJ

    Book  Google Scholar 

  21. Scherer POJ (2010) Computational physics: simulation of classical and quantum systems. Springer, New York, NY

    Book  Google Scholar 

  22. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  24. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631–639

    Article  CAS  PubMed  Google Scholar 

  25. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    Article  CAS  PubMed  Google Scholar 

  26. Náray-Szabó G, Oláh J, Krámos B (2013) Quantum mechanical modeling: a tool for the understanding of enzyme reactions. Biomolecules 3:662–702

    Article  PubMed Central  PubMed  Google Scholar 

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  28. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335

    Article  CAS  PubMed  Google Scholar 

  29. Knegtel RMA, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266:424–440

    Article  CAS  PubMed  Google Scholar 

  30. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  31. Österberg F, Åqvist J (2005) Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods. FEBS Lett 579:2939–2944

    Article  PubMed  Google Scholar 

  32. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan J, Leclerc F, Xu W, Ellington AD, Cedergren R (1996) A docking and modelling strategy for peptide–RNA complexes: applications to BIV Tat–TAR and HIV Rev–RBE. Fold Des 1:463–472

    Article  CAS  PubMed  Google Scholar 

  34. Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G et al (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 5:e1000528

    Article  PubMed Central  PubMed  Google Scholar 

  35. Auffinger P, Westhof E (1998) Simulations of the molecular dynamics of nucleic acids. Curr Opin Struct Biol 8:227–236

    Article  CAS  PubMed  Google Scholar 

  36. Jayapal P, Mayer G, Heckel A, Wennmohs F (2009) Structure–activity relationships of a caged thrombin binding DNA aptamer: insight gained from molecular dynamics simulation studies. J Struct Biol 166:241–250

    Article  CAS  PubMed  Google Scholar 

  37. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12:190–196

    Article  CAS  PubMed  Google Scholar 

  38. Stavrakoudis A, Tsoulos I, Uray K, Hudecz F, Apostolopoulos V (2011) Homology modeling and molecular dynamics simulations of MUC1-9/H-2K(b) complex suggest novel binding interactions. J Mol Model 17:1817–1829

    Article  CAS  PubMed  Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  40. Guvench O, MacKerell AD (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88, Molecular modeling of proteins. A Kukol (ed.), Humana Press, pp. 63–88

    Article  CAS  PubMed  Google Scholar 

  41. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19, http://lammps.sandia.gov

  42. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  43. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  45. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  46. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  47. Guvench O, MacKerell A Jr (2008) Comparison of protein force fields for molecular dynamics simulations. In: Kukol A (ed) Molecular modeling of proteins, vol 443. Humana Press, Totowa, NJ, pp 63–88

    Chapter  Google Scholar 

  48. Hünenberger P (2005) Thermostat algorithms for molecular dynamics simulations. In: Holm C, Kremer K (eds) Advanced computer simulation, vol 173. Springer, Berlin, pp 105–149

    Chapter  Google Scholar 

  49. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  50. Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94:L75–L77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Schaeffer RD, Fersht A, Daggett V (2008) Combining experiment and simulation in protein folding: closing the gap for small model systems. Curr Opin Struct Biol 18:4–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  CAS  PubMed  Google Scholar 

  53. Pérez A, Luque FJ, Orozco M (2007) Dynamics of B-DNA on the microsecond time scale. J Am Chem Soc 129:14739–14745

    Article  PubMed  Google Scholar 

  54. Rhinehardt K, Mohan R, Srinivas G, Kelkar A (2013) Computational modeling of peptide - aptamer binding in biosensor applications. Int J Biosci Biochem Bioinform 3:639–642

    CAS  Google Scholar 

  55. Schalley CA (2012) Analytical methods in supramolecular chemistry, vol 1. Wiley-VCH Verlag GmbH & Company KGaA, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U. S. Army Research Office via award/contract no. W911NF-11-1-0168. We thank Dr. M. Sandros for scientific discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram V. Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rhinehardt, K.L., Mohan, R.V., Srinivas, G. (2015). Computational Modeling of Peptide–Aptamer Binding. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics