Skip to main content

Measurement of Mitochondrial NADH and FAD Autofluorescence in Live Cells

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

In the process of energy production, mitochondrial networks are key elements to allow metabolism of substrates into ATP. Many pathological conditions have been associated with mitochondrial dysfunction as mitochondria are associated with a wide range of cellular processes. Therefore, any disruption in the energy production induces devastating effects that can ultimately lead to cell death due to chemical ischemia. To address the mitochondrial health and function, there are several bioenergetic parameters reflecting either whole mitochondrial functionality or individual mitochondrial complexes. Particularly, metabolism of nutrients in the tricarboxylic acid cycle provides substrates used to generate electron carriers (nicotinamide adenine dinucleotide [NADH] and flavin adenine dinucleotide [FADH2]) which ultimately donate electrons to the mitochondrial electron transport chain. The levels of NADH and FADH2 can be estimated through imaging of NADH/NAD(P)H or FAD autofluorescence. This report demonstrates how to perform and analyze NADH/NAD(P)H and FAD autofluorescence in a time-course-dependent manner and provides information about NADH and FAD redox indexes both reflecting the activity of the mitochondrial electron transport chain (ETC). Furthermore, total pools of NADH and FAD can be estimated providing information about the rate of substrate supply into the ETC. Finally, the analysis of NADH autofluorescence after induction of maximal respiration can offer information about the pentose phosphate pathway activity where glucose can be alternatively oxidized instead of pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Edeas M, Weissig V (2013) Targeting mitochondria: strategies, innovations and challenges: the future of medicine will come through mitochondria. Mitochondrion 13(5):389–390

    Article  CAS  PubMed  Google Scholar 

  3. Monsalve M, Borniquel S, Valle I, Lamas S (2007) Mitochondrial dysfunction in human pathologies. Front Biosci 12:1131–1153

    Article  CAS  PubMed  Google Scholar 

  4. Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: part I. Expert Opin Ther Targets 14(4):369–385

    Article  CAS  PubMed  Google Scholar 

  5. Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: Part II. Expert Opin Ther Targets 14(5):497–511

    Article  CAS  PubMed  Google Scholar 

  6. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012:428010

    PubMed Central  PubMed  Google Scholar 

  7. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  8. Bartolome F, Wu HC, Burchell VS, Preza E, Wray S, Mahoney CJ, Fox NC, Calvo A, Canosa A, Moglia C, Mandrioli J, Chio A, Orrell RW, Houlden H, Hardy J, Abramov AY, Plun-Favreau H (2013) Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78(1):57–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689

    Article  CAS  PubMed  Google Scholar 

  10. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT (2014) Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457(3):415–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Y. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bartolomé, F., Abramov, A.Y. (2015). Measurement of Mitochondrial NADH and FAD Autofluorescence in Live Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics