Skip to main content

Knockdown of Nuclear-Retained Long Noncoding RNAs Using Modified DNA Antisense Oligonucleotides

  • Protocol
  • First Online:
Nuclear Bodies and Noncoding RNAs

Abstract

Long noncoding RNAs (lncRNAs) have recently emerged as important players in diverse cellular processes. Among them, a large fraction of lncRNAs are localized within cell nucleus. And several of these nuclear-retained lncRNAs have been found to regulate key nuclear processes, which brings up the requirement of effective genetic tools to explore the functions of this “dark matter” inside the nucleus. While siRNAs and shRNAs are widely used tools in loss-of-function studies, their general efficiency in depleting nuclear-retained lncRNAs is limited, due to the fact that the RNAi machinery is located mainly in the cytoplasm of mammalian cells. Here, we describe the usage of chemically modified chimeric DNA antisense oligonucleotides (ASO) in effective knockdown of nuclear-retained lncRNAs, with a focus on the detailed workflow from the design and synthesis of ASOs, to in vitro and in vivo delivery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181

    Article  CAS  PubMed  Google Scholar 

  3. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  4. Singh DK, Prasanth KV (2013) Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosome Res 21(6–7):695–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nakagawa S, Kageyama Y (2014) Nuclear lncRNAs as epigenetic regulators-Beyond skepticism. Biochim Biophys Acta 1839(3):215–222

    Google Scholar 

  6. Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tripathi V et al (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9(3):e1003368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6(1):211–221

    Article  CAS  PubMed  Google Scholar 

  9. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci U S A 98(25):14428–14433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zeng Y, Cullen BR (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8(7):855–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31(2):700–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chiu YL, Ali A, Chu CY, Cao H, Rana TM (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11(8):1165–1175

    Article  CAS  PubMed  Google Scholar 

  13. Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489(1):31–44

    Article  CAS  PubMed  Google Scholar 

  14. Vickers TA et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278(9):7108–7118

    Article  CAS  PubMed  Google Scholar 

  15. Ideue T, Hino K, Kitao S, Yokoi T, Hirose T (2009) Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 15(8):1578–1587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lima WF et al (2007) Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71(1):83–91

    Article  CAS  PubMed  Google Scholar 

  17. Koller E et al (2011) Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39(11):4795–4807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang B et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2(1):111–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Graham MJ et al (2007) Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 48(4):763–767

    Article  CAS  PubMed  Google Scholar 

  20. Hung G et al (2013) Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Therapeut 23(6):369–378

    Article  CAS  Google Scholar 

  21. Butler M et al (2005) Spinal distribution and metabolism of 2′-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats. Neuroscience 131(3):705–715

    Article  CAS  PubMed  Google Scholar 

  22. Passini MA et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3:72ra18

    Article  PubMed Central  PubMed  Google Scholar 

  23. Grillone LR, Lanz R (2001) Fomivirsen. Drugs Today (Barc) 37(4):245–255

    CAS  Google Scholar 

  24. Geary RS, Henry SP, Grillone LR (2002) Fomivirsen: clinical pharmacology and potential drug interactions. Clin Pharmacokinet 41(4):255–260

    Article  CAS  PubMed  Google Scholar 

  25. Seth PP et al (2010) Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J Org Chem 75(5):1569–1581

    Article  CAS  PubMed  Google Scholar 

  26. Ostergaard ME et al (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41(21):9634–9650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the KVP lab is supported by grants from NIH/NIGMS (GM088252) and American Cancer Society (RSG-11-174-01-RMC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuling Guo Ph.D. or Kannanganattu V. Prasanth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zong, X. et al. (2015). Knockdown of Nuclear-Retained Long Noncoding RNAs Using Modified DNA Antisense Oligonucleotides. In: Nakagawa, S., Hirose, T. (eds) Nuclear Bodies and Noncoding RNAs. Methods in Molecular Biology, vol 1262. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2253-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2253-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2252-9

  • Online ISBN: 978-1-4939-2253-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics