Skip to main content

Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

All aspects of a plant’s life—beginning with the seed germination and ending with the seed formation—are adversely affected by different abiotic stresses such as salinity, flood, drought, heat, cold, etc. Being sessile, plants have developed excellent mechanisms of stress perception and signal transduction. Multiple, complex, and dynamically intertwined interactions among nucleic acids, proteins, and metabolites determine the phenotype and final response of plants towards environmental stresses. In response to these stresses, a multitude of processes are activated which enable the plants to cope with these stresses up to a certain extent. These include alteration of expression of stress-responsive genes, production of stress proteins, alteration of ion transport, activation of various antioxidant systems, and compatible solute accumulation. Our knowledge of abiotic stress signaling has grown in leaps and bounds since the emergence and developments in the omics technologies. Genome-scale studies at transcript, protein, and metabolite levels provide information about dynamic changes taking place at these functional levels. For full understanding of signaling networks, it is essentially important to integrate all these aspects. This approach is of remarkable applicability when the aim is to understand how plants react to abiotic stresses. In order to understand molecular basis of stress tolerance along with signaling network under unfavorable environmental situations, recent progress on systematic use of omics technologies including genomics, transcriptomics, proteomics, and metabolomics has been summarized in this chapter. Furthermore, the integration of all these approaches, which provide systems biology method for understanding stress response in plants, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah C, Sergeant K, Guillier C, Dumas-Gaudot E, Leclercq CC, Renaut J (2012) Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic work flow to the analysis of microsomal proteins of Medicago truncatula roots. Proteome Sci 10(1):37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Planta 54(2):201–212

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–75

    CAS  PubMed  Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399

    PubMed Central  PubMed  Google Scholar 

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44

    CAS  PubMed  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M et al (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  Google Scholar 

  • Alonso R, Oñate-Sánehez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K et al (2009) A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21(6):1747–1761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amor BB, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19(1):57–69

    PubMed Central  PubMed  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases-structure and reaction mechanism. Phytochemistry 70(13–14):1504–1510

    CAS  PubMed  Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27(3):241–250

    CAS  Google Scholar 

  • Arbona V, Iglesias DJ, Talón M, Gómez-Cadenas A (2009) Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem 57:7338–7347

    CAS  PubMed  Google Scholar 

  • Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, van Dongen JT et al (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:826–839

    PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–43

    CAS  PubMed  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13(9):474–482

    PubMed Central  PubMed  Google Scholar 

  • Banu MN, Hoque MA, Watanabe-Sugimoto M, Islam MM, Uraji M, Matsuoka K et al (2010) Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Biosci Biotechnol Biochem 74(10):2043–9

    CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    CAS  PubMed  Google Scholar 

  • Bocker S, Rasche F (2008) Towards de novo identification of metabolites by analysing tandem mass spectra. Bioinformatics 24:49–55

    Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    CAS  PubMed  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582(4):473–478

    CAS  PubMed  Google Scholar 

  • Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D et al (2009) Genome project standards in a new era of sequencing. Science 326(5950):236–237

    CAS  PubMed  Google Scholar 

  • Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13(2):53–63

    CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819(2):120–128

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50(10):1187–1195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8(7):1579–1598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christianson JA, Dennis ES, Llewellyn DJ, Wilson WI (2010) ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5(4):428–432

    CAS  PubMed  Google Scholar 

  • Cifre J, Bota J, Escalona JM, Medrano H, Flexas J (2005) Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) An open gate to improve water-use efficiency? Agric Ecosysyst Environ 106(2–3):159–170

    Google Scholar 

  • Coba de la Pena T, Carcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D et al (2008) A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta 227:769–779

    CAS  PubMed  Google Scholar 

  • Conde A, Diallinas G, Chaumont F, Chaves M, Gerós H (2010) Transporters, channels, or simple diffusion? Dogmas, a typical roles and complexity in transport systems. Int J Biochem Cell Biol 42(6):857–868

    CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Augustin P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19(10):1062–1071

    CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corrêa LG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944

    PubMed Central  PubMed  Google Scholar 

  • Cramer GR (2010) Abiotic stress & plant responses from the whole vine to the genes. Aust J Grape Wine Res 16:86–93

    CAS  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    CAS  PubMed  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Ferrando A et al (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–91

    PubMed  Google Scholar 

  • Debnath M, Pandey M, Bisen PS (2011) An omics approach to understand the plant abiotic stress. OMICS 15(11):739–762

    CAS  PubMed  Google Scholar 

  • Delano-Frier JP, Aviles-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillon-Arbelaez PA, Herrera-Estrella L et al (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 12:363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D et al (2004) The role of (Delta)1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16(12):3413–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn WB (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5:11001

    Google Scholar 

  • Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68:2799–815

    CAS  PubMed  Google Scholar 

  • Falvo S, Di CM, Desiderio A, Benvenuto E, Moglia A, America T, Lanteri S, Acquadro A (2012) 2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves. Proteomics 12(3):448–460

    CAS  PubMed  Google Scholar 

  • Fernie AR (2007) The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry 68:2861–80

    CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2010) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88

    Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10(7):3168–3185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF (2013) Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. Int J Mol Sci 14(3):4912–4933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26(4):467–477

    CAS  PubMed  Google Scholar 

  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13(5–6):532–8

    CAS  PubMed  Google Scholar 

  • Garg R, Jain M (2011) Pyrosequencing data reveals tissue-specific expression of lineage-specific transcripts in chickpea. Plant Signal Behav 6(11):1868–1870

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID et al (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22(3):214–24

    CAS  PubMed  Google Scholar 

  • Gleeson D, Lelu-Walter M-A, Parkinson M (2005) Overproduction of proline in transgenic hybrid larch (Larix × leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Mol Breeding 15(1):21–9

    CAS  Google Scholar 

  • Gokirmak T, Paul AL, Ferl RJ (2010) Plant phosphopeptide-binding proteins as signaling mediators. Curr Opin Plant Biol 13(5):527–532

    PubMed  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    CAS  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    CAS  PubMed  Google Scholar 

  • Good AG, Zaplachinski ST (1994) The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol Plant 90(1):9–14

    CAS  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PC (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819(2):176–85

    CAS  PubMed  Google Scholar 

  • Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    CAS  PubMed  Google Scholar 

  • Guan Q, Wu J, Yue X, Zhang Y, Zhu J (2013) A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis. PLoS Genet 9(8):e1003755

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gulyani V, Khurana P (2011) Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genet Genomes 7(4):725–738

    Google Scholar 

  • Guo Y, Song Y (2009) Differential proteomic analysis of apoplastic proteins during initial phase of salt stress in rice. Plant Signal Behav 4(2):121–122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–68

    CAS  PubMed  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2(7):495–502

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Toorchi M, Matsushita K, Iwasaki Y, Komatsu S (2009) Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein Pept Lett 16(6):685–697

    CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genomic era: past, present and future. Plant J 61(6):1041–1052

    Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6(4):318–27

    CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta (1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122(4):1129–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103(35):12987–12992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24(16):1695–1708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253:532–543

    CAS  PubMed  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K et al (2005) Metabolite annotations based on the integration of mass spectral information. Plant J 54(5):949–62

    Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    CAS  PubMed  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12(1):50–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT (2008) The RNA polymerase II core promoter-the gateway to transcription. Curr Opin Cell Biol 20(3):253–259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238

    PubMed Central  PubMed  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001

    CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9(3):411–417

    CAS  PubMed  Google Scholar 

  • Karowe DN, Grubb C (2011) Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J Chem Ecol 37:1332–1340

    CAS  PubMed  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2008) Genome wide analysis for identification of salt responsive genes in common wheat. Funct Integr Genomics 8(3):277–286

    CAS  PubMed  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58(3):415–24

    CAS  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kind T, Scholz M, Fiehn O (2009) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS One 4(5):e5440

    PubMed Central  PubMed  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of (delta)-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108(4):1387–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M, Hayashizaki Y, Carninci P (2006) CAGE: cap analysis of gene expression. Nat Methods 3(3):211–222

    CAS  PubMed  Google Scholar 

  • Komatsu S, Wada T, Abalea Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K (2009) Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 8(10):4487–4499

    CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E et al (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21(8):1635–8

    CAS  PubMed  Google Scholar 

  • Kosova K, Prail IT, Vitamvas P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14(4):6757–6789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127(4):1694–1710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R et al (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumari S, Panjabi Nee Sabharwal V, Kushwaha HR, Sopory SK, Singla-Pareek SL et al (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    CAS  PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120(3):345–50

    CAS  PubMed  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551

    CAS  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH et al (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16(6):1378–1391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CP, Eubel H, O’Toole N, Millar AH (2011) Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria. Phytochemistry 72(10):1092–1108

    CAS  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    CAS  PubMed  Google Scholar 

  • Levandi T, Leon C, Kaljurand M, Garcia-Canas V, Cifuentes A (2008) Capillary electrophoresis time of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80:6329–35

    CAS  PubMed  Google Scholar 

  • Li M, Berendzen KW, Schoffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73(4–5):559–567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–96

    CAS  PubMed  Google Scholar 

  • Liu D, Ford KL, Roessner U, Natera S, Cassin AM, Patterson JH et al (2013) Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13(12–13):2046–2062

    CAS  PubMed  Google Scholar 

  • Loiacono FV, De Tullio MC (2012) Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era. OMICS 16(4):160–7

    CAS  PubMed  Google Scholar 

  • Lugan R, Niogret MF, Kervazo L, Larher FR, Kopka J, Bouchereau A (2009) Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ 32:95–108

    CAS  PubMed  Google Scholar 

  • Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123(3):795–805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    CAS  PubMed  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P et al (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4(3):20

    Google Scholar 

  • Marques MC, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V et al (2009) A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics 10:428

    PubMed Central  PubMed  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150(4):1972–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuda F, Shinbo Y, Oikawa A, Hirai MY, Fiehn O, Kanaya S et al (2009) Assessment of metabolome annotation quality: a method for evaluating the false discovery rate of elemental composition searches. PLoS One 4(10):e7490

    PubMed Central  PubMed  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ et al (2010) AtMet Express development: a phytochemical atlas of Arabidopsis development. Plant Physiol 152:566–578

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA et al (2006) A liquid chromatography–mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL et al (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    CAS  Google Scholar 

  • Monton MR, Soga T (2007) Metabolome analysis by capillary electrophoresis–mass spectrometry. J Chromatogr A 1168:237–46

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–81

    CAS  PubMed  Google Scholar 

  • Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK (2010) Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Methods Mol Biol 639:95–118

    CAS  PubMed  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14(12):3089–3099

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Žárský V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281(50):38697–38704

    CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H et al (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18(2):185–93

    CAS  PubMed  Google Scholar 

  • Nieva C, Busk PK, Domínguez-Puigjaner E, Lumbreras V, Testillano PS, Risueño MC et al (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58(6):899–914

    CAS  PubMed  Google Scholar 

  • Nikolovski N, Rubtsov D, Segura MP, Miles GP, Stevens TJ, Dunkley TP et al (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol 160(2):1037–1051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC et al (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61(2):290–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101(11):3985–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239, 247

    CAS  PubMed  Google Scholar 

  • Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa T Jr (2013) Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res 12(12):5681–5695

    CAS  PubMed  Google Scholar 

  • Pan Z, Zhao Y, Zheng Y, Liu J, Jiang X, Guo Y (2012) A high-throughput method for screening Arabidopsis mutants with disordered abiotic stress induced calcium signal. J Genet Genomics 39(5):225–35

    CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9(5):2584–2599

    CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T et al (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42(1):57–63

    CAS  PubMed  Google Scholar 

  • Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B 771(1–2):3–31

    CAS  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8(7):330–334

    CAS  PubMed  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:654120

    PubMed Central  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12(4):421–426

    CAS  PubMed  Google Scholar 

  • Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot MB et al (2006) Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6(24):6509–6527

    CAS  PubMed  Google Scholar 

  • Pulla RK, Kim YJ, Parvin S, Shim JS, Lee JH, Kim YJ et al (2009) Isolation of S-adenosyl-L-methionine synthetase gene from Panax ginseng C.A. Meyer and analysis of its response to abiotic stresses. Physiol Mol Biol Plants 15(3):267–275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Punjabi-Sabharwal V, Karan R, Khan T, Pareek A (2010) Abiotic stress responses: complexities in gene expression. In: Pareek A, Sopory SK, Bonhert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 177–198

    Google Scholar 

  • Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K et al (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148(1):212–222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S (2009) Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74

    PubMed Central  PubMed  Google Scholar 

  • Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L et al (2011) Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 144(1–3):1159–74

    CAS  PubMed  Google Scholar 

  • Quintero F, Ohta M, Shi H, Zhu J-K, Pardo J (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A 99(13):9061–9066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291

    CAS  PubMed  Google Scholar 

  • Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ (2011) CE-MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32:52–65

    CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23(6):2010–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiser V, Raitt D, Saito H (2003) Yeast osmosensor Slnl and plant cytokinin receptor Crel respond to changes in turgor pressure. J Cell Biol 161(6):1035–1040

    PubMed Central  CAS  PubMed  Google Scholar 

  • Remmerie N, De VT, Valkenborg D, Laukens K, Smets K, Vreeken J et al (2011) Unraveling tobacco BY-2 protein complexes with BN PAGE/LC-MS/MS and clustering methods. J Proteomics 74(8):1201–1217

    CAS  PubMed  Google Scholar 

  • Riese F, Grinschgl S, Gersbacher MT, Russi N, Hock C, Nitsch RM et al (2013) Visualization and quantification of APP intracellular domain-mediated nuclear signaling by bimolecular fluorescence complementation. PLoS One 8(9):e76094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robida AM, Kerppola TK (2009) Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. J Mol Biol 394(3):391–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogachev I, Aharoni A (2012) UPLC-MS-based metabolite analysis in tomato. Methods Mol Biol 860:129–144

    CAS  PubMed  Google Scholar 

  • Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B et al (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24(24):2894–2900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163(3):525–532

    CAS  Google Scholar 

  • Roosens NH, Bitar FA, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9(2):73–80

    CAS  Google Scholar 

  • Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ et al (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11(34):1–15

    Google Scholar 

  • Saito K, Dixon RA, Willmitzer L (eds) (2006) Plant metabolomics, vol 57. Springer, Berlin

    Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 5:575–588

    Google Scholar 

  • Satoh R, Fujita Y, Nakashima K, Shinozaki K, and Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317

    CAS  PubMed  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24(9):721–5

    CAS  Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11(10):508–16

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–70

    CAS  PubMed  Google Scholar 

  • Schutz W, Hausmann N, Krug K, Hampp R, Macek B (2011) Extending SILAC to proteomics of plant cell lines. Plant Cell 23(5):1701–1705

    PubMed Central  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ et al (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97(12):6896–6901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–7

    CAS  PubMed  Google Scholar 

  • Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100(26):15776–15781

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+ pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soda N, Kushwaha HR, Soni P, Singla-Pareek SL, Pareek A (2013) A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Funct Integr Genomics 13(3):351–365

    CAS  PubMed  Google Scholar 

  • Song Y, Chen LG, Zhang LP, Yu DQ (2010) Overexpression of OsWRKY72 gene interferes in the ABA signal and auxin transport pathway of Arabidopsis. J Biosci 35(3):459–471

    CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166(4):941–8

    CAS  Google Scholar 

  • Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ et al (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143(2):661–669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sugimoto M, Hirayama A, Robert M, Abe S, Soga T, Tomita M (2010) Prediction of metabolite identity from accurate mass, migration time prediction and isotopic pattern information in CE-TOFMS data. Electrophoresis 31:2311–2318

    CAS  PubMed  Google Scholar 

  • Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226(5):1097–1108

    CAS  PubMed  Google Scholar 

  • Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31(10):1823–1828

    CAS  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309

    CAS  PubMed  Google Scholar 

  • Swindell WR (2006) The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 174(4):1811–1824

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K et al (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284(3):173–183

    CAS  PubMed  Google Scholar 

  • Tamura T, Hra K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131(2):454–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY et al (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25(12):1380–1386

    CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152

    CAS  PubMed  Google Scholar 

  • Thiel J, Hollmann J, Rutten T, Weber H, Scholz U, Weschke W (2012) 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells. PLoS One 7(7):e41867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD et al (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139(3):1125–37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trujillo LE, Sotolongo M, Menéndez C, Ochogavía ME, Coll Y, Hernández I et al (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49(4):512–525

    CAS  PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Umezawa T (2011) Systems biology approaches to abscisic acid signaling. J Plant Res 124(4):539–548

    CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K et al (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11(9):1743–1754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    CAS  PubMed  Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ et al (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–76

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–9

    CAS  PubMed  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245

    CAS  PubMed  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant environment interaction. Arabidopsis Book 8:e0140

    PubMed Central  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–39

    CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H et al (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149(4):1739–50

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JL, Baker JM, Beale MH (2007) Recent applications of NMR spectroscopy in plant metabolomics. FEBS J 274(5):1126–31

    CAS  PubMed  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K et al (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25(13):3133–3143

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitelegge JP (2002) Plant proteomics: BLASTing out of a MudPIT. Proc Natl Acad Sci U S A 99(18):11564–11566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR III (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690

    CAS  PubMed  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen ZL, Qu LJ (2005) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168(2):297–302

    CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30

    CAS  PubMed  Google Scholar 

  • Xianan L, Baird WV (2003) Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci 43:678–687

    Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54(3):440–451

    CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K et al (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–81

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33(3):217–224

    CAS  Google Scholar 

  • Yan QC, Kuo MS, Li S, Bui HH, Peake DA, Sanders PE et al (2008) AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J Biol Chem 283(15):10048–10057

    Google Scholar 

  • Yang XY, Jiang WJ, Yu HJ (2012) The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci 13(2):2481–2500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124

    PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–102

    CAS  PubMed  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J et al (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43(12):1473–1483

    CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281(8):5310–5318

    CAS  PubMed  Google Scholar 

  • Zhang YY, Li Y, Gao T et al (2008) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem 72(8):2251–2254

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–14

    CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    CAS  PubMed  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139(1):41–8

    CAS  Google Scholar 

  • Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2009) Potentiation of pathogen specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc Natl Acad Sci U S A 97(23):12920–12925

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Biotechnology, Department of Science and Technology (Government of India), and Jawaharlal Nehru University (through capacity building, CAS, and PURSE) for supporting research work in the laboratory. Award of research fellowship from the Council of Scientific and Industrial Research (CSIR) to S.R., R.N., and P.S. is thankfully acknowledged. Grants from DBT to K.K.N. and UGC to N.S. are also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soni, P. et al. (2015). Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2211-6_1

Download citation

Publish with us

Policies and ethics