Skip to main content

iPhysioMeter: A Smartphone Photoplethysmograph for Measuring Various Physiological Indices

  • Protocol
  • First Online:
Mobile Health Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

iPhysioMeter is a new smartphone application (“App”) for the Apple iPhone and iPod touch that allows photoplethysmography (PPG) to be implemented without the need for any additional devices. The resulting signal, the photoplethysmogram, allows the calculation of basic but valuable and frequently used physiological indices such as heart rate (HR) and pulse volume (PV). The design of iPhysioMeter has very much been influenced by a consideration of usability, as is immediately evident from ones first experience with it. However, its apparent simplicity in use should not disguise the need for correct operation, which otherwise might lead to collection of invalid or inaccurate data. There are several unexpected pitfalls that might not only produce inaccurate values, but, under some circumstances, could also damage the device or present a hazard to the user or subject. We therefore describe here, firstly, the core technology that makes it possible to perform PPG and to calculate HR and normalized PV (NPV) from the photoplethysmogram using only a smartphone, secondly, the correct and optimum methods and procedures for using iPhysioMeter that will help to ensure safety and the derivation of valid data under real operational conditions. We hope that these descriptions will help facilitate any activities related to physiological measurement when using only a smartphone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker KH (2009) A brief history of arterial wave mechanics. Med Biol Eng Comput 47:111–118. doi:10.1007/s11517-009-0440-5

    Article  Google Scholar 

  2. Challoner AVJ (1979) Photoelectric plethysmography for estimating cutaneous blood flow. In: Rolfe P (ed) Noninvasive physiological measurements, vol 1. Academic, London, pp 125–151

    Google Scholar 

  3. Matsumura K, Yamakoshi T, Yamakoshi Y, Rolfe P (2011) The effect of competition on heart rate during kart driving: a field study. BMC Res Notes 4:342. doi:10.1186/1756-0500-4-342

    Article  Google Scholar 

  4. Matsumura K, Yamakoshi T, Noguchi H, Rolfe P, Matsuoka Y (2012) Fish consumption and cardiovascular response during mental stress. BMC Res Notes 5:288. doi:10.1186/1756-0500-5-288

    Article  Google Scholar 

  5. McNally RJ, Lasko NB, Clancy SA, Macklin ML, Pitman RK, Orr SP (2004) Psychophysiological responding during script-driven imagery in people reporting abduction by space aliens. Psychol Sci 15:493–497. doi:10.1111/j.0956-7976.2004.00707.x

    Article  Google Scholar 

  6. al’Absi M, Nakajima M, Hooker S, Wittmers L, Cragin T (2012) Exposure to acute stress is associated with attenuated sweet taste. Psychophysiology 49:96–103. doi:10.1111/j.1469-8986.2011.01289.x

    Article  Google Scholar 

  7. Nakajima M, Kumar S, Wittmers L, Scott MS, al’Absi M (2013) Psychophysiological responses to stress following alcohol intake in social drinkers who are at risk of hazardous drinking. Biol Psychol 93:9–16. doi:10.1016/j.biopsycho.2012.12.009

    Article  Google Scholar 

  8. Yamakoshi T, Matsumura K, Hanaki S, Rolfe P (2013) Cardiovascular hemodynamic effects of Red Bull(R) Energy Drink during prolonged, simulated, monotonous driving. SpringerPlus 2:215. doi:10.1186/ 2193-1801-2-215

    Article  Google Scholar 

  9. Yamakoshi T, Matsumura K, Rolfe P, Hanaki S, Ikarashi A, Lee J, Yamakoshi K (2014) Potential for health screening using long-term cardiovascular parameters measured by finger volume-oscillometry: pilot comparative evaluation in regular and sleep-deprived activities. IEEE J Biomed Health Inform 18:28–35. doi:10.1109/JBHI.2013.2274460

    Article  Google Scholar 

  10. Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28:R1–R39. doi:10.1088/0967-3334/28/3/R01

    Article  Google Scholar 

  11. Pitman RK, Orr SP, Forgue DF, de Jong JB, Claiborn JM (1987) Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch Gen Psychiatry 44:970–975

    Article  CAS  Google Scholar 

  12. Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146:168–174. doi:10.1016/S0002-8703(03)00094-2

    Article  Google Scholar 

  13. Tanaka G, Yamakoshi K, Sawada Y, Matsumura K, Maeda K, Kato Y, Horiguchi M, Ohguro H (2011) A novel photoplethysmography technique to derive normalized arterial stiffness as a blood pressure independent measure in the finger vascular bed. Physiol Meas 32:1869–1883. doi:10.1088/0967-3334/32/11/003

    Article  Google Scholar 

  14. Matsuoka Y, Nishi D, Yonemoto N, Hamazaki K, Matsumura K, Noguchi H, Hashimoto K, Hamazaki T (2013) Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial. BMC Psychiatry 13:8. doi:10.1186/1471-244X-13-8

    Article  Google Scholar 

  15. Matsumura K, Noguchi H, Nishi D, Matsuoka Y (2012) The effect of omega-3 fatty acids on psychophysiological assessment for the secondary prevention of posttraumatic stress disorder: an open-label pilot study. Glob J Health Sci 4:3–9. doi:10.5539/gjhs.v4n1p3

    Google Scholar 

  16. Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, Lasko NB, Cahill L, Orr SP (2002) Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry 51:189–192

    Article  CAS  Google Scholar 

  17. Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB (2005) Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 112:1945–1952. doi:10.1161/CIRCULATIONAHA.105.556886

    Article  CAS  Google Scholar 

  18. Jonathan E, Leahy M (2010) Investigating a smartphone imaging unit for photoplethysmography. Physiol Meas 31:N79–N83. doi:10.1088/0967-3334/31/11/N01

    Article  CAS  Google Scholar 

  19. Scully CG, Lee J, Meyer J, Gorbach AM, Granquist-Fraser D, Mendelson Y, Chon KH (2012) Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans Biomed Eng 59:303–306. doi:10.1109/TBME.2011.2163157

    Article  Google Scholar 

  20. Lee J, Matsumura K, Yamakoshi T, Rolfe P, Tanaka N, Kim K, Yamakoshi K (2013) Validation of normalized pulse volume in the outer ear as a simple measure of sympathetic activity using warm and cold pressor tests: towards applications in ambulatory monitoring. Physiol Meas 34:359–375. doi:10.1088/0967-3334/34/3/359

    Article  Google Scholar 

  21. Matsumura K, Yamakoshi T (2013) iPhysioMeter: a new approach for measuring heart rate and normalized pulse volume using only a smartphone. Behav Res Methods 45:1272–1278. doi:10.3758/s13428-012-0312-z

    Article  Google Scholar 

  22. Matsumura K, Rolfe P, Lee J, Yamakoshi T (2014) iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume in the presence of motion artifact? PLoS One 9:e91205. doi:10.1371/journal.pone.0091205

    Article  Google Scholar 

  23. Jonathan E, Leahy MJ (2011) Cellular phone-based photoplethysmographic imaging. J Biophotonics 4:293–296. doi:10.1002/jbio.201000050

    Article  Google Scholar 

  24. Lee J, Matsumura K, Yamakoshi K, Rolfe P, Tanaka S, Yamakoshi T (2013) Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. Conf Proc IEEE Eng Med Biol Soc 2013:1724–1727. doi:10.1109/EMBC.2013.6609852

    Google Scholar 

  25. Maeda Y, Sekine M, Tamura T (2011) The advantages of wearable green reflected photoplethysmography. J Med Syst 35:829–834. doi:10.1007/s10916-010-9506-z

    Article  Google Scholar 

  26. Apple (2011) AV Foundation Programming Guide. http://developer.apple.com/library/ios/DOCUMENTATION/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html. Accessed 27 Feb 2014

  27. Kamal AA, Harness JB, Irving G, Mearns AJ (1989) Skin photoplethysmography—a review. Comput Methods Programs Biomed 28:257–269

    Article  CAS  Google Scholar 

  28. Hayes MJ, Smith PR (2001) A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans Biomed Eng 48:452–461. doi:10.1109/10.915711

    Article  CAS  Google Scholar 

  29. Yamakoshi T, Matsumura K (2014) iPhysioMeter.com. http://iphysiometer.com/app/. Accessed 27 Feb 2014

  30. Giltvedt J, Sira A, Helme P (1984) Pulsed multifrequency photoplethysmograph. Med Biol Eng Comput 22:212–215. doi:10.1007/BF02442745

    Article  CAS  Google Scholar 

  31. Yamakoshi T, Matsumura K, Rolfe P (2014) Controlled mechanical vibration applied to driver’s right heel to sustain alertness: effects on cardiovascular behavior. Transport Res C Emerg Technol 38:101–109. doi:10.1016/j.trc.2013.10.009

    Article  Google Scholar 

  32. Karlen W, Ansermino JM, Dumont GA, Scheffer C (2013) Detection of the optimal region of interest for camera oximetry. Conf Proc IEEE Eng Med Biol Soc 2013:2263–2266. doi:10.1109/EMBC.2013.6609988

    Google Scholar 

  33. Schafer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166:15–29. doi:10.1016/j.ijcard.2012.03.119

    Article  Google Scholar 

  34. Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39:246–253. doi:10.1017/S0048577202990049

    Article  Google Scholar 

  35. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310. doi:10.1016/S0140-6736(86)90837-8

    Article  CAS  Google Scholar 

  36. Ludbrook J (1997) Comparing methods of measurements. Clin Exp Pharmacol Physiol 24:193–203. doi:10.1111/j.1440-1681.1997.tb01807.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsumura, K., Rolfe, P., Yamakoshi, T. (2015). iPhysioMeter: A Smartphone Photoplethysmograph for Measuring Various Physiological Indices. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics