Skip to main content

Metabolism of BCAAs

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The three branched chain amino acids are unique in that the first catabolic step does not occur in the liver. Leucine, isoleucine, and valine share the first two catabolic enzymes—branched chain aminotransferase (BCAT) and branched chain ketoacid dehydrogenase (BCKD). Both BCAT isoforms use Vitamin B-6 cofactors as temporary acceptors of the α-amino group during the process of aminating α-ketoglutarate, which becomes glutamate. The deaminated BCAAs are known as BCKAs, and can be reaminated into their BCAA form. The next step in BCAA catabolism, the decarboxylation of the BCKAs, is irreversible. In some tissues, the mitochondrial isoform of BCAT (BCATm), appears to form a metabolon with BCKD, which is a physical relationship between the BCATm enzyme and the BCKD enzyme complex. This facilitates the transfer of substrates and increases the efficiency of the reactions. After decarboxylation of the BCKA, the catabolic pathways for the three BCAA precursors diverge, utilizing different enzymes and processes. Disruptions in BCAA metabolism, primarily occurring in the first two steps, can cause a number of severe metabolic disorders. Additionally, changes in both BCAAs and BCAA enzymes have been implicated in the pathophysiology of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchesini G, Bianchi GP, Vilstrup H, Capelli M, Zoli M, Pisi E. Elimination of infused branched-chain amino-acids from plasma of patients with non-obese type 2 diabetes mellitus. Clin Nutr. 1991;10(2):105.

    Article  CAS  PubMed  Google Scholar 

  2. Lang CH, Lynch CJ, Vary TC. BCATm deficiency ameliorates endotoxin-induced decrease in muscle protein synthesis and improves survival in septic mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Perez-Villasenor G, Tovar AR, Moranchel AH, Hernandez-Pando R, Hutson SM, Torres N. Mitochondrial branched chain aminotransferase gene expression in AS-30D hepatoma rat cells and during liver regeneration after partial hepatectomy in rat. Life Sci. 2005;78(4):334.

    Article  CAS  PubMed  Google Scholar 

  4. Richardson MA, Small AM, Read LL, Chao HM, Clelland JD. Branched chain amino acid treatment of tardive dyskinesia in children and adolescents. J Clin Psychiatry. 2004;65(1):92.

    Article  CAS  PubMed  Google Scholar 

  5. Rossi Fanelli F, Cangiano C, Capocaccia L, Cascino A, Ceci F, Muscaritoli M, Giunchi G. Use of branched chain amino acids for treating hepatic encephalopathy: clinical experiences. Gut. 1986;27 Suppl 1:111.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF. Mitochondrial transport proteins of the brain. J Neurosci Res. 2007;85(15):3367.

    Article  CAS  PubMed  Google Scholar 

  7. Bixel M, Shimomura Y, Hutson S, Hamprecht B. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem. 2001;49(3):407.

    Article  CAS  PubMed  Google Scholar 

  8. Cole JT, Sweatt AJ, Hutson SM. Expression of mitochondrial branched-chain aminotransferase and alpha-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat. 2012;6:18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bixel MG, Hutson SM, Hamprecht B. Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem. 1997;45(5):685.

    Article  CAS  PubMed  Google Scholar 

  10. Castellano S, Casarosa S, Sweatt AJ, Hutson SM, Bozzi Y. Expression of cytosolic branched chain aminotransferase (BCATc) mRNA in the developing mouse brain. Gene Expr Patterns. 2007;7(4):485.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ. Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem. 2007;100(6):1458.

    CAS  PubMed  Google Scholar 

  12. Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol. 2004;477(4):360.

    Article  CAS  PubMed  Google Scholar 

  13. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136(1 Suppl):207S.

    CAS  PubMed  Google Scholar 

  14. Drown PM, Torres N, Tovar AR, Davoodi J, Hutson SM. Use of sulfhydryl reagents to investigate branched chain alpha-keto acid transport in mitochondria. Biochim Biophys Acta. 2000;1468(1–2):273.

    Article  CAS  PubMed  Google Scholar 

  15. Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, Pleasure D. Astrocyte leucine metabolism: significance of branched-chain amino acid transamination. J Neurochem. 1996;66(1):378.

    Article  CAS  PubMed  Google Scholar 

  16. Yudkoff M, Daikhin Y, Lin ZP, Nissim I, Stern J, Pleasure D. Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem. 1994;62(3):1192.

    Article  CAS  PubMed  Google Scholar 

  17. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A. Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S.

    CAS  PubMed  Google Scholar 

  18. Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem. 2007;282(16):11893.

    Article  CAS  PubMed  Google Scholar 

  19. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293(6):E1552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lang CH, Frost RA, Deshpande N, Kumar V, Vary TC, Jefferson LS, Kimball SR. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. Am J Physiol Endocrinol Metab. 2003;285(6):E1205.

    CAS  PubMed  Google Scholar 

  21. Lynch CJ. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr. 2001;131(3):861S.

    CAS  PubMed  Google Scholar 

  22. Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni Z, Hutson SM. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab. 2003;285(4):E854.

    CAS  PubMed  Google Scholar 

  23. Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM. The branched chain amino acid (BCAA) metabolon: interation of glutamate dehydrogenase with the mitochondrial branched chain aminotransferase (BCATm). J Biol Chem. 2010;285(1):265–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sweatt AJ, Wood M, Suryawan A, Wallin R, Willingham MC, Hutson SM. Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metab. 2004;286(1):E64.

    Article  CAS  PubMed  Google Scholar 

  25. Goichon A, Chan P, Lecleire S, Coquard A, Cailleux AF, Walrand S, Lerebours E, Vaudry D, Dechelotte P, Coeffier M. An enteral leucine supply modulates human duodenal mucosal proteome and decreases the expression of enzymes involved in fatty acid beta-oxidation. J Proteomics. 2013;78:535.

    Article  CAS  PubMed  Google Scholar 

  26. DeSantiago S, Torres N, Suryawan A, Tovar AR, Hutson SM. Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr. 1998;128(7):1165.

    CAS  PubMed  Google Scholar 

  27. Dillon EL. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013;45(3):431–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Faure M, Glomot F, Papet I. Branched-chain amino acid aminotransferase activity decreases during development in skeletal muscles of sheep. J Nutr. 2001;131(5):1528.

    CAS  PubMed  Google Scholar 

  29. Pelletier V, Marks L, Wagner DA, Hoerr RA, Young VR. Branched-chain amino acid interactions with reference to amino acid requirements in adult men: leucine metabolism at different valine and isoleucine intakes. Am J Clin Nutr. 1991;54(2):402.

    CAS  PubMed  Google Scholar 

  30. Purpera MN, Shen L, Taghavi M, Munzberg H, Martin RJ, Hutson SM, Morrison CD. Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus. J Endocrinol. 2012;212(1):85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Castellano S, Macchi F, Scali M, Huang JZ, Bozzi Y. Cytosolic branched chain aminotransferase (BCATc) mRNA is up-regulated in restricted brain areas of BDNF transgenic mice. Brain Res. 2006;1108(1):12.

    Article  CAS  PubMed  Google Scholar 

  32. Mersey BD, Jin P, Danner DJ. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005;14(22):3371.

    Article  CAS  PubMed  Google Scholar 

  33. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A. 2010;107(1):366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Cole Ph.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cole, J.T. (2015). Metabolism of BCAAs. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics