Skip to main content

Vacuolar Staining Methods in Plant Cells

  • Protocol
  • First Online:
Plant Cell Expansion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1242))

Abstract

Commercially available fluorescent dyes enable the fast and specific visualization of plant vacuoles, allowing for investigation of membrane dynamics and vacuolar biogenesis in living cells. Here, we describe different approaches tinting the tonoplast or the vacuolar lumen with a range of dyes, and illustrate its utilization with established fluorescent-tagged marker lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246

    CAS  Google Scholar 

  2. Marty F (1999) Plant vacuoles. Plant Cell 11(4):587–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11(4):601–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Löfke C, Luschnig C, Kleine-Vehn J (2013) Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 130(1):82–94

    Article  PubMed  Google Scholar 

  5. Ozkan P, Mutharasan R (2002) A rapid method for measuring intracellular pH using BCECF-AM. Biochim Biophys Acta 1572(1):143–148

    Article  CAS  PubMed  Google Scholar 

  6. Jelinkova A et al (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61(5):883–892

    Article  CAS  PubMed  Google Scholar 

  7. Löfke C, Dünser K, Kleine-Vehn J (2013) Epidermal patterning genes impose non-cell autonomous cell size determination and have additional roles in root meristem size control. J Integr Plant Biol 55(9):864–875

    Article  PubMed  Google Scholar 

  8. Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24(1–2):86–100

    Article  PubMed  Google Scholar 

  9. Wiltshire EJ, Collings DA (2009) New dynamics in an old friend: dynamic tubular vacuoles radiate through the cortical cytoplasm of red onion epidermal cells. Plant Cell Physiol 50(10):1826–1839

    Article  CAS  PubMed  Google Scholar 

  10. Abrahams S et al (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35(5):624–636

    Article  CAS  PubMed  Google Scholar 

  11. Jackson MA et al (2007) A bioinformatic approach to the identification of a conserved domain in a sugarcane legumain that directs GFP to the lytic vacuole. Funct Plant Biol 34(7):633–644

    Article  CAS  Google Scholar 

  12. Schwab B, Hulskamp M (2010) Neutral red staining for plant vacuoles. Cold Spring Harb Protoc 2010(6):pdb prot4953

    Google Scholar 

  13. Hillmer S, Quader H, Robert-Nicoud M, Robinson DG (1989) Lucifer yellow uptake in cells and protoplasts of Daucas carota visualized by laser scanning microscopy. J Exp Bot 40(4):417–423

    Article  CAS  Google Scholar 

  14. Gao XQ et al (2005) The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol 139(3):1207–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Löfke C et al (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci U S A 110(9):3627–3632

    Article  PubMed Central  PubMed  Google Scholar 

  16. Geldner N et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59(1):169–178

    Article  CAS  PubMed  Google Scholar 

  17. Abas L et al (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to N. Geldner and C. Luschnig for providing material, D. Whittaker for help in preparing the manuscript, and the BOKU-VIBT Imaging Center for access and expertise. This work was supported by the Vienna Science and Technology Fund (WWTF) (to J.K.-V.) and the Deutsche Forschungsgemeinschaft (DFG) (personal postdoctoral research grant to C.L. and D.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Kleine-Vehn or Christian Löfke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scheuring, D., Schöller, M., Kleine-Vehn, J., Löfke, C. (2015). Vacuolar Staining Methods in Plant Cells. In: Estevez, J. (eds) Plant Cell Expansion. Methods in Molecular Biology, vol 1242. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1902-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1902-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1901-7

  • Online ISBN: 978-1-4939-1902-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics