Skip to main content

Epigenetics of Colorectal Cancer

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Colorectal cancer (CRC) is one of most common malignancies and a leading cause of cancer related deaths worldwide. Epigenetic change is an important mechanism of colorectal carcinogenesis. Accumulation of epigenetic changes was found in colorectal cancer and other tumors. Aberrant changes in DNA methylation, histone modification, imprinting, and noncoding RNAs were frequently found in human colorectal cancer. Epigenetic changes may serve as a diagnostic, prognostic, and chemo-sensitive marker. It also becomes a cancer preventive or therapeutic target in some circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRC:

Colorectal cancer

HMTs:

Histone methyltransferases

HDMs:

Histone demethylases

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

LOI:

Loss of imprinting

LncRNA:

Long noncoding RNA

TSA:

Trichostatin A

5-aza-CR:

5-azacytidine

5-aza-CdR:

5-aza-2′-deoxycytidine

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  2. Jia Y, Guo M (2013) Epigenetic changes in colorectal cancer. Chin J Cancer 32:21–30

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    CAS  PubMed  Google Scholar 

  4. Jia Y, Yang Y, Zhan Q et al (2012) Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn 14:577–585

    CAS  PubMed  Google Scholar 

  5. Yan W, Wu K, Herman JG et al (2013) Epigenetic regulation of DACH1, a novel Wnt signaling component in colorectal cancer. Epigenetics 8:1373–1383

    CAS  PubMed  Google Scholar 

  6. Zhu H, Wu K, Yan W et al (2013) Epigenetic silencing of DACH1 induces loss of transforming growth factor-beta1 antiproliferative response in human hepatocellular carcinoma. Hepatology 58:2012–2022

    CAS  PubMed  Google Scholar 

  7. Jia Y, Yang Y, Brock MV et al (2013) Epigenetic regulation of DACT2, a key component of the Wnt signalling pathway in human lung cancer. J Pathol 230:194–204

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    CAS  PubMed  Google Scholar 

  9. Carmona FJ, Esteller M (2010) Epigenomics of human colon cancer. Mutat Res 693:53–60

    CAS  PubMed  Google Scholar 

  10. Trang P, Weidhaas JB, Slack FJ (2008) MicroRNAs as potential cancer therapeutics. Oncogene 27(Suppl 2):S52–S57

    CAS  PubMed  Google Scholar 

  11. Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  12. Borthakur G, Huang X, Kantarjian H et al (2010) Report of a phase 1/2 study of a combination of azacitidine and cytarabine in acute myelogenous leukemia and high-risk myelodysplastic syndromes. Leuk Lymphoma 51:73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Issa JP, Garcia-Manero G, Giles FJ et al (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    CAS  PubMed  Google Scholar 

  14. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    CAS  PubMed  Google Scholar 

  15. Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153:773–784

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  17. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    CAS  PubMed  Google Scholar 

  18. Kim H, Park J, Jung Y et al (2010) DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int J Oncol 36:1563–1572

    CAS  PubMed  Google Scholar 

  19. Chen ZX, Mann JR, Hsieh CL et al (2005) Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95:902–917

    CAS  PubMed  Google Scholar 

  20. Sandoval J, Peiro-Chova L, Pallardo FV et al (2013) Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn 13:457–471

    CAS  PubMed  Google Scholar 

  21. Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20:5085–5092

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Free A, Wakefield RI, Smith BO et al (2001) DNA recognition by the methyl-CpG binding domain of MeCP2. J Biol Chem 276:3353–3360

    CAS  PubMed  Google Scholar 

  23. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  24. Ushijima T (2007) Epigenetic field for cancerization. J Biochem Mol Biol 40:142–150

    CAS  PubMed  Google Scholar 

  25. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    CAS  PubMed  Google Scholar 

  26. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N et al (2010) The epigenetics of (hereditary) colorectal cancer. Cancer Genet Cytogenet 203:1–6

    CAS  PubMed  Google Scholar 

  27. Esteller M, Fraga MF, Guo M et al (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10:3001–3007

    CAS  PubMed  Google Scholar 

  28. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014

    CAS  PubMed  Google Scholar 

  29. Zhang W, Glockner SC, Guo M et al (2008) Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 68:2764–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Voorham QJ, Janssen J, Tijssen M et al (2013) Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer 13:603

    PubMed Central  PubMed  Google Scholar 

  31. Rawson JB, Manno M, Mrkonjic M et al (2011) Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients. Carcinogenesis 32:741–747

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee BB, Lee EJ, Jung EH et al (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15:6185–6191

    CAS  PubMed  Google Scholar 

  33. Aguilera O, Fraga MF, Ballestar E et al (2006) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25:4116–4121

    CAS  PubMed  Google Scholar 

  34. Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143:1442–1460.e1441

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ebert MP, Mooney SH, Tonnes-Priddy L et al (2005) Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia 7:771–778

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ricciardiello L, Goel A, Mantovani V et al (2003) Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res 63:787–792

    CAS  PubMed  Google Scholar 

  37. Wales MM, Biel MA, el Deiry W et al (1995) p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1:570–577

    CAS  PubMed  Google Scholar 

  38. Xu XL, Yu J, Zhang HY et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 10:3441–3454

    CAS  PubMed  Google Scholar 

  39. Hellebrekers DM, Lentjes MH, van den Bosch SM et al (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15:3990–3997

    CAS  PubMed  Google Scholar 

  40. Akiyama Y, Watkins N, Suzuki H et al (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Mittag F, Kuester D, Vieth M et al (2006) DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett 240:69–75

    CAS  PubMed  Google Scholar 

  42. Toyooka S, Toyooka KO, Harada K et al (2002) Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res 62:3382–3386

    CAS  PubMed  Google Scholar 

  43. Rojas A, Meherem S, Kim YH et al (2008) The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer. Int J Cancer 123:14–21

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Jiang MH, Fei J, Lan MS et al (2008) Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 51:1525–1533

    CAS  PubMed  Google Scholar 

  45. Javierre BM, Fernandez AF, Richter J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–179

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  47. Carmona FJ, Esteller M (2010) DNA methylation in early neoplasia. Cancer Biomark 9:101–111

    PubMed  Google Scholar 

  48. Warren JD, Xiong W, Bunker AM et al (2011) Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 9:133

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Toth K, Sipos F, Kalmar A et al (2012) Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One 7:e46000

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ahlquist DA, Taylor WR, Mahoney DW et al (2012) The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin Gastroenterol Hepatol 10:272–277.e271

    CAS  PubMed Central  PubMed  Google Scholar 

  51. deVos T, Tetzner R, Model F et al (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346

    CAS  PubMed  Google Scholar 

  52. Tanzer M, Balluff B, Distler J et al (2010) Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One 5:e9061

    PubMed Central  PubMed  Google Scholar 

  53. Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Riojas MA, Guo M, Glockner SC et al (2007) Methylation-induced silencing of ASC/TMS1, a pro-apoptotic gene, is a late-stage event in colorectal cancer. Cancer Biol Ther 6:1710–1716

    CAS  PubMed  Google Scholar 

  55. Carmona FJ, Esteller M (2011) Moving closer to a prognostic DNA methylation signature in colon cancer. Clin Cancer Res 17:1215–1217

    CAS  PubMed  Google Scholar 

  56. Ogino S, Nosho K, Kirkner GJ et al (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:1734–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Crea F, Giovannetti E, Cortesi F et al (2009) Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines. Mol Cancer Ther 8:1964–1973

    CAS  PubMed  Google Scholar 

  58. Miyaki Y, Suzuki K, Koizumi K et al (2012) Identification of a potent epigenetic biomarker for resistance to camptothecin and poor outcome to irinotecan-based chemotherapy in colon cancer. Int J Oncol 40:217–226

    CAS  PubMed  Google Scholar 

  59. Hiraki M, Kitajima Y, Nakafusa Y et al (2010) CpG island methylation of BNIP3 predicts resistance against S-1/CPT-11 combined therapy in colorectal cancer patients. Oncol Rep 23:191–197

    CAS  PubMed  Google Scholar 

  60. Pietrantonio F, Perrone F, de Braud F et al (2013) Activity of temozolomide in patients with advanced chemorefractory colorectal cancer and MGMT promoter methylation. Ann Oncol 25:404

    PubMed  Google Scholar 

  61. Grady WM, Rajput A, Lutterbaugh JD et al (2001) Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res 61:900–902

    CAS  PubMed  Google Scholar 

  62. Ebert MP, Model F, Mooney S et al (2006) Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 131:1418–1430

    CAS  PubMed  Google Scholar 

  63. Grutzmann R, Molnar B, Pilarsky C et al (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3:e3759

    PubMed Central  PubMed  Google Scholar 

  64. Ahlquist DA, Zou H, Domanico M et al (2012) Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology 142:248–256, quiz e225–246

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Zou H, Harrington JJ, Shire AM et al (2007) Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev 16:2686–2696

    CAS  PubMed  Google Scholar 

  66. Zou HZ, Yu BM, Wang ZW et al (2002) Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res 8:188–191

    PubMed  Google Scholar 

  67. Nakayama H, Hibi K, Takase T et al (2003) Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int J Cancer 105:491–493

    CAS  PubMed  Google Scholar 

  68. Yamaguchi S, Asao T, Nakamura J et al (2003) High frequency of DAP-kinase gene promoter methylation in colorectal cancer specimens and its identification in serum. Cancer Lett 194:99–105

    CAS  PubMed  Google Scholar 

  69. Tan SH, Ida H, Lau QC et al (2007) Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep 18:1225–1230

    CAS  PubMed  Google Scholar 

  70. Lofton-Day C, Model F, Devos T et al (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 54:414–423

    CAS  PubMed  Google Scholar 

  71. Wallner M, Herbst A, Behrens A et al (2006) Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res 12:7347–7352

    CAS  PubMed  Google Scholar 

  72. Sabatino L, Fucci A, Pancione M et al (2012) UHRF1 coordinates peroxisome proliferator activated receptor gamma (PPARG) epigenetic silencing and mediates colorectal cancer progression. Oncogene 31:5061–5072

    CAS  PubMed  Google Scholar 

  73. Wang Z, Yuan X, Jiao N et al (2012) CDH13 and FLBN3 gene methylation are associated with poor prognosis in colorectal cancer. Pathol Oncol Res 18:263–270

    CAS  PubMed  Google Scholar 

  74. Ebert MP, Tanzer M, Balluff B et al (2012) TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med 366:44–53

    CAS  PubMed  Google Scholar 

  75. Kim JC, Lee HC, Cho DH et al (2011) Genome-wide identification of possible methylation markers chemosensitive to targeted regimens in colorectal cancers. J Cancer Res Clin Oncol 137:1571–1580

    CAS  PubMed  Google Scholar 

  76. Goelz SE, Vogelstein B, Hamilton SR et al (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228:187–190

    CAS  PubMed  Google Scholar 

  77. Suzuki K, Suzuki I, Leodolter A et al (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9:199–207

    CAS  PubMed  Google Scholar 

  78. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    CAS  PubMed  Google Scholar 

  79. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Hibi K, Goto T, Mizukami H et al (2009) Demethylation of the CDH3 gene is frequently detected in advanced colorectal cancer. Anticancer Res 29:2215–2217

    CAS  PubMed  Google Scholar 

  81. Kawakami K, Matsunoki A, Kaneko M et al (2011) Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer. Cancer Sci 102:166–174

    CAS  PubMed  Google Scholar 

  82. Milicic A, Harrison LA, Goodlad RA et al (2008) Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res 68:7760–7768

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sunami E, de Maat M, Vu A et al (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS One 6:e18884

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Pavicic W, Joensuu EI, Nieminen T et al (2012) LINE-1 hypomethylation in familial and sporadic cancer. J Mol Med (Berl) 90:827–835

    CAS  Google Scholar 

  85. Estecio MR, Gharibyan V, Shen L et al (2007) LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2:e399

    PubMed Central  PubMed  Google Scholar 

  86. Matsuzaki K, Deng G, Tanaka H et al (2005) The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res 11:8564–8569

    CAS  PubMed  Google Scholar 

  87. Rodriguez J, Frigola J, Vendrell E et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468

    CAS  PubMed  Google Scholar 

  88. van Engeland M, Derks S, Smits KM et al (2011) Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 29:1382–1391

    PubMed  Google Scholar 

  89. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968

    CAS  PubMed  Google Scholar 

  90. Braakhuis BJ, Tabor MP, Kummer JA et al (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730

    CAS  PubMed  Google Scholar 

  91. Kim ES, Hong WK, Khuri FR (2002) Chemoprevention of aerodigestive tract cancers. Annu Rev Med 53:223–243

    CAS  PubMed  Google Scholar 

  92. Guo M, House MG, Hooker C et al (2004) Promoter hypermethylation of resected bronchial margins: a field defect of changes? Clin Cancer Res 10:5131–5136

    CAS  PubMed  Google Scholar 

  93. Shen L, Kondo Y, Rosner GL et al (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338

    CAS  PubMed  Google Scholar 

  94. Rainier S, Johnson LA, Dobry CJ et al (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749

    CAS  PubMed  Google Scholar 

  95. Ogawa O, Eccles MR, Szeto J et al (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751

    CAS  PubMed  Google Scholar 

  96. Pedersen IS, Dervan PA, Broderick D et al (1999) Frequent loss of imprinting of PEG1/MEST in invasive breast cancer. Cancer Res 59:5449–5451

    CAS  PubMed  Google Scholar 

  97. Cai YC, Yang GY, Nie Y et al (2000) Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 21:683–689

    CAS  PubMed  Google Scholar 

  98. Tanaka K, Shiota G, Meguro M et al (2001) Loss of imprinting of long QT intronic transcript 1 in colorectal cancer. Oncology 60:268–273

    CAS  PubMed  Google Scholar 

  99. Zhan S, Shapiro DN, Helman LJ (1994) Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest 94:445–448

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rainier S, Dobry CJ, Feinberg AP (1995) Loss of imprinting in hepatoblastoma. Cancer Res 55:1836–1838

    CAS  PubMed  Google Scholar 

  101. Kim HT, Choi BH, Niikawa N et al (1998) Frequent loss of imprinting of the H19 and IGF-II genes in ovarian tumors. Am J Med Genet 80:391–395

    CAS  PubMed  Google Scholar 

  102. Cui H, Horon IL, Ohlsson R et al (1998) Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med 4:1276–1280

    CAS  PubMed  Google Scholar 

  103. Kaneda A, Wang CJ, Cheong R et al (2007) Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc Natl Acad Sci U S A 104:20926–20931

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Cui H, Cruz-Correa M, Giardiello FM et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    CAS  PubMed  Google Scholar 

  105. Toyota M, Ahuja N, Ohe-Toyota M et al (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bardhan K, Liu K (2013) Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 5:676–713

    CAS  Google Scholar 

  107. Ang PW, Loh M, Liem N et al (2010) Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer 10:227

    PubMed Central  PubMed  Google Scholar 

  108. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    CAS  PubMed  Google Scholar 

  109. Seligson DB, Horvath S, Shi T et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    CAS  PubMed  Google Scholar 

  110. Liu C, Xu D (2004) Inhibition of histone deacetylases. Methods Mol Biol 287:87–97

    CAS  PubMed  Google Scholar 

  111. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Glozak MA, Sengupta N, Zhang X et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    CAS  PubMed  Google Scholar 

  113. Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    CAS  PubMed  Google Scholar 

  115. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    CAS  PubMed  Google Scholar 

  116. Ishihama K, Yamakawa M, Semba S et al (2007) Expression of HDAC1 and CBP/p300 in human colorectal carcinomas. J Clin Pathol 60:1205–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Weichert W, Roske A, Niesporek S et al (2008) Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 14:1669–1677

    CAS  PubMed  Google Scholar 

  118. Ashktorab H, Belgrave K, Hosseinkhah F et al (2009) Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 54:2109–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Nosho K, Shima K, Irahara N et al (2009) SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 22:922–932

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tsang DP, Cheng AS (2011) Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol 26:19–27

    CAS  PubMed  Google Scholar 

  121. Fluge O, Gravdal K, Carlsen E et al (2009) Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 101:1282–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Fussbroich B, Wagener N, Macher-Goeppinger S et al (2011) EZH2 depletion blocks the proliferation of colon cancer cells. PLoS One 6:e21651

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Yamamoto S, Tateishi K, Kudo Y et al (2013) Histone demethylase KDM4C regulates sphere formation by mediating the cross talk between Wnt and Notch pathways in colonic cancer cells. Carcinogenesis 34:2380–2388

    CAS  PubMed  Google Scholar 

  124. Mathews LA, Crea F, Farrar WL (2009) Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 78:1–17

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    CAS  PubMed  Google Scholar 

  126. Li Q, Chen H (2012) Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 7:551–558

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Liu Y, Hong Y, Zhao Y et al (2008) Histone H3 (lys-9) deacetylation is associated with transcriptional silencing of E-cadherin in colorectal cancer cell lines. Cancer Invest 26:575–582

    CAS  PubMed  Google Scholar 

  128. Jiang X, Tan J, Li J et al (2008) DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13:529–541

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Fahrner JA, Eguchi S, Herman JG et al (2002) Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62:7213–7218

    CAS  PubMed  Google Scholar 

  130. Bachman KE, Park BH, Rhee I et al (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:89–95

    CAS  PubMed  Google Scholar 

  131. Jin B, Li Y, Robertson KD (2011) DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2:607–617

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21:416–425

    CAS  PubMed  Google Scholar 

  133. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    CAS  PubMed  Google Scholar 

  134. Slaby O, Svoboda M, Michalek J et al (2009) MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8:102

    PubMed Central  PubMed  Google Scholar 

  135. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    CAS  PubMed  Google Scholar 

  136. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103:3687–3692

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Motoyama K, Inoue H, Takatsuno Y et al (2009) Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol 34:1069–1075

    CAS  PubMed  Google Scholar 

  138. Sarver AL, French AJ, Borralho PM et al (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401

    PubMed Central  PubMed  Google Scholar 

  139. Nagel R, le Sage C, Diosdado B et al (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802

    CAS  PubMed  Google Scholar 

  140. Arndt GM, Dossey L, Cullen LM et al (2009) Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 9:374

    PubMed Central  PubMed  Google Scholar 

  141. Monzo M, Navarro A, Bandres E et al (2008) Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res 18:823–833

    CAS  PubMed  Google Scholar 

  142. Oberg AL, French AJ, Sarver AL et al (2011) miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One 6:e20465

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Vogt M, Munding J, Gruner M et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322

    PubMed  Google Scholar 

  144. Earle JS, Luthra R, Romans A et al (2010) Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 12:433–440

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Tsang WP, Ng EK, Ng SS et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31:350–358

    CAS  PubMed  Google Scholar 

  146. Stratmann J, Wang CJ, Gnosa S et al (2011) Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients. BMC Cancer 11:345

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Cheng H, Zhang L, Cogdell DE et al (2011) Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6:e17745

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Toyota M, Suzuki H, Sasaki Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    CAS  PubMed  Google Scholar 

  149. Lujambio A, Ropero S, Ballestar E et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    CAS  PubMed  Google Scholar 

  150. Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    CAS  PubMed  Google Scholar 

  151. Suzuki H, Takatsuka S, Akashi H et al (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res 71:5646–5658

    CAS  PubMed  Google Scholar 

  152. Sana J, Faltejskova P, Svoboda M et al (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Mattick JS, Amaral PP, Dinger ME et al (2009) RNA regulation of epigenetic processes. Bioessays 31:51–59

    CAS  PubMed  Google Scholar 

  154. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Kogo R, Shimamura T, Mimori K et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326

    CAS  PubMed  Google Scholar 

  156. Ge X, Chen Y, Liao X et al (2013) Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 30:588

    PubMed  Google Scholar 

  157. Liu Q, Huang J, Zhou N et al (2013) LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 41:4976–4987

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Baylin SB (2011) Resistance, epigenetics and the cancer ecosystem. Nat Med 17:288–289

    CAS  PubMed  Google Scholar 

  159. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11:726–734

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Sekeres MA, Tiu RV, Komrokji R et al (2012) Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood 120:4945–4951

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Juergens RA, Wrangle J, Vendetti FP et al (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1:598–607

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Datta J, Ghoshal K, Denny WA et al (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Howman RA, Prince HM (2011) New drug therapies in peripheral T-cell lymphoma. Expert Rev Anticancer Ther 11:457–472

    CAS  PubMed  Google Scholar 

  164. Braiteh F, Soriano AO, Garcia-Manero G et al (2008) Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res 14:6296–6301

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhou Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yan, W., Guo, M. (2015). Epigenetics of Colorectal Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics