Skip to main content

Detection of p53 Protein Aggregation in Cancer Cell Lines and Tumor Samples

  • Protocol
  • First Online:
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1219))

Abstract

The p53 protein plays a central role in regulating apoptosis. The loss of functional p53 is common in many cancers. In cancer cells, the dysfunctional p53 protein often maintains a misfolded, inactive conformation due to genetic mutations or posttranslational deregulation. The misfolded p53 protein can aggregate and form amyloid-like oligomers and fibrils, which abrogate the pro-apoptotic functions of p53. Therefore, the aggregation of p53 may be a crucial factor in carcinogenesis, tumor progression, and the response of cancer cells to apoptotic signals. In this chapter, we provide details on various methods for detecting p53 aggregation in cancer cell lines and tumor samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883. doi:10.1101/cshperspect.a001883

    Article  PubMed  PubMed Central  Google Scholar 

  2. Michael D, Oren M (2002) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12(1):53–59, S0959437X01002647 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Chen J, Ng SM, Chang C, Zhang Z, Bourdon JC, Lane DP, Peng J (2009) p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev 23(3):278–290. doi:10.1101/gad.1761609, 23/3/278 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Chan WM, Poon RY (2007) The p53 isoform Deltap53 lacks intrinsic transcriptional activity and reveals the critical role of nuclear import in dominant-negative activity. Cancer Res 67(5):1959–1969. doi:10.1158/0008-5472.CAN-06-3602, 67/5/1959 [pii]

    Article  PubMed  CAS  Google Scholar 

  5. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81(11):678–699. doi:10.1007/s00109-003-0464-5

    Article  CAS  Google Scholar 

  6. Silva JL, Rangel LP, Costa DC, Cordeiro Y, De Moura Gallo CV (2013) Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 33(4):e00054. doi:10.1042/BSR20130065, BSR20130065 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. doi:10.1038/nrd3050, nrd3050 [pii]

    Article  PubMed  CAS  Google Scholar 

  8. Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A, Stefani M (2008) The (1–63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J 94(9):3635–3646. doi:10.1529/biophysj.107.122283, S0006-3495(08)70440-5 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmuller G, Foguel D, Silva JL (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42(30):9022–9027. doi:10.1021/bi034218k

    Article  PubMed  CAS  Google Scholar 

  10. Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K (2006) Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 45(6):1608–1619. doi:10.1021/bi051192j

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7(5):285–295. doi:10.1038/nchembio.546, nchembio.546 [pii]

    Article  PubMed  CAS  Google Scholar 

  12. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238. doi:10.1016/j.jsb.2005.06.006, S1047-8477(05)00130-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  13. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18. doi:10.1186/1750-1326-2-18, 1750-1326-2-18 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vassar PS, Culling CF (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch Pathol 68:487–498

    PubMed  CAS  Google Scholar 

  15. Brancroft J, Gamlble M (2002) Theory and practice of histological techniques, 5th edn. Churchill Livingstone, London

    Google Scholar 

  16. Linke R (2006) Congo red staining of amyloid: improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In: Uversky VN, Fink AL (eds) Protein misfolding, aggregation, and conformational diseases, vol 4. Springer, New York, pp 239–376

    Chapter  Google Scholar 

  17. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13(1):45–53, 0896-6273(94)90458-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  18. Fukumoto H, Asami-Odaka A, Suzuki N, Iwatsubo T (1996) Association of A beta 40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 5(1):13–17

    Article  PubMed  CAS  Google Scholar 

  19. Hrncic R, Wall J, Wolfenbarger DA, Murphy CL, Schell M, Weiss DT, Solomon A (2000) Antibody-mediated resolution of light chain-associated amyloid deposits. Am J Pathol 157(4):1239–1246. doi:10.1016/S0002-9440(10)64639-1, S0002-9440(10)64639-1 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Mor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yang-Hartwich, Y., Bingham, J., Garofalo, F., Alvero, A.B., Mor, G. (2015). Detection of p53 Protein Aggregation in Cancer Cell Lines and Tumor Samples. In: Mor, G., Alvero, A. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 1219. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1661-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1661-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1660-3

  • Online ISBN: 978-1-4939-1661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics