Skip to main content

BAC Sequencing Using Pooled Methods

  • Protocol
  • First Online:
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

Abstract

Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One 6:e19379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  3. Feltus FA, Saski CA, Mockaitis K, Haiminen N, Parida L, Smith Z, Ford J, Staton ME, Ficklin SP, Blackmon BP et al (2011) Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes. BMC Genomics 12:379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Haiminen N, Feltus FA, Parida L (2011) Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes. BMC Genomics 12:194

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Gonzalez VM, Benjak A, Henaff EM, Mir G, Casacuberta JM, Garcia-Mas J, Puigdomenech P (2010) Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biol 10:246

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U et al (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. wgs-assembler (2013) http://sourceforge.net/apps/mediawiki/wgs-assembler/. Accessed 31 Oct 2013

  9. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-seq-based transcriptomics. Nucleic Acids Res 40:W622–W627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Trimmomatic. (2013) www.usadellab.org/cms/?page=trimmomatic

  11. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. bowtie2 (2013) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml. Accessed 31 Oct 2013

  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  14. samtools (2013) http://samtools.sourceforge.net/. Accessed 31 Oct 2013

  15. Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 10:1772–1787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. sff_extract (2013) https://github.com/JoseBlanca/seq_crumbs. Accessed 31 Oct 2013

  17. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  18. National Center for Biotechnology Information (2002) The NCBI handbook [Internet]. The reference sequence (RefSeq) project, chapter 18. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD, http://www.ncbi.nlm.nih.gov/books/NBK21091/

  19. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acid Res 35(Database Issue):D846–D851

    Google Scholar 

  20. Van Nieuwerburgh F, Thompson RC, Ledesma J, Deforce D, Gaasterland T, Ordoukhanian P, Head SR (2012) Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination. Nucleic Acids Res 40:e24

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7:e30087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Haiminen N, Kuhn DN, Parida L, Rigoutsos I (2011) Evaluation of methods for de novo genome assembly from high-throughput sequencing reads reveals dependencies that affect the quality of the results. PLoS One 6:e24182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Haiminen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saski, C.A., Feltus, F.A., Parida, L., Haiminen, N. (2015). BAC Sequencing Using Pooled Methods. In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics