Skip to main content

Mouse Models of Osteoarthritis: Surgical Model of Posttraumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus

  • Protocol
  • First Online:
Osteoporosis and Osteoarthritis

Abstract

The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of posttraumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression. This chapter describes the requirements for the surgical induction of OA in mouse models, and provides guidelines and tools for the subsequent histological, immunohistochemical, and molecular analyses. Methods for the assessment of the contributions of selected genes in genetically modified strains are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulet B, Ulici V, Stone TC et al (2012) Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. Arthritis Rheum 64:3256–3266

    Article  CAS  PubMed  Google Scholar 

  2. Poulet B, Hamilton RW, Shefelbine S et al (2011) Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 63:137–147

    Article  PubMed  Google Scholar 

  3. Ko FC, Dragomir C, Plumb DA et al (2013) In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum 65:1569–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sato T, Konomi K, Yamasaki S et al (2006) Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 54:808–817

    Article  CAS  PubMed  Google Scholar 

  5. Aigner T, Fundel K, Saas J et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54: 3533–3544

    Article  CAS  PubMed  Google Scholar 

  6. Glasson SS (2007) In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets 8:367–376

    Article  CAS  PubMed  Google Scholar 

  7. Little CB, Fosang AJ (2010) Is cartilage matrix breakdown an appropriate therapeutic target in osteoarthritis–insights from studies of aggrecan and collagen proteolysis? Curr Drug Targets 11:561–575

    Article  CAS  PubMed  Google Scholar 

  8. Bernardo BC, Belluoccio D, Rowley L et al (2011) Cartilage intermediate layer protein 2 (CILP-2) is expressed in articular and meniscal cartilage and down-regulated in experimental osteoarthritis. J Biol Chem 286:37758–37767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yasuhara R, Ohta Y, Yuasa T et al (2011) Roles of beta-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 91:1739–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lodewyckx L, Cailotto F, Thysen S et al (2012) Tight regulation of wingless-type signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther 14:R16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Loeser RF, Olex AL, McNulty MA et al (2012) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64:705–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nuka S, Zhou W, Henry SP et al (2010) Phenotypic characterization of epiphycan-deficient and epiphycan/biglycan double-deficient mice. Osteoarthritis Cartilage 18: 88–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648

    Article  CAS  PubMed  Google Scholar 

  14. Stanton H, Rogerson FM, East CJ et al (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434: 648–652

    Article  CAS  PubMed  Google Scholar 

  15. Little CB, Barai A, Burkhardt D et al (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Echtermeyer F, Bertrand J, Dreier R et al (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15:1072–1076

    Article  CAS  PubMed  Google Scholar 

  17. Lin AC, Seeto BL, Bartoszko JM et al (2009) Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med 15: 1421–1425

    Article  CAS  PubMed  Google Scholar 

  18. Sampson ER, Hilton MJ, Tian Y et al (2011) Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 3:101ra193

    Article  Google Scholar 

  19. Chockalingam PS, Sun W, Rivera-Bermudez MA et al (2011) Elevated aggrecanase activity in a rat model of joint injury is attenuated by an aggrecanase specific inhibitor. Osteoarthritis Cartilage 19:315–323

    Article  CAS  PubMed  Google Scholar 

  20. Johnson K, Zhu S, Tremblay MS et al (2012) A stem cell-based approach to cartilage repair. Science 336:717–721

    Article  CAS  PubMed  Google Scholar 

  21. Rai MF, Hashimoto S, Johnson EE et al (2012) Heritability of articular cartilage regeneration and its association with ear-wound healing. Arthritis Rheum 64:2300–2310

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hashimoto S, Rai MF, Janiszak KL et al (2012) Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice. Osteoarthritis Cartilage 20:562–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakamura E, Nguyen MT, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235: 2603–2612

    Article  CAS  PubMed  Google Scholar 

  24. Dao DY, Jonason JH, Zhang Y et al (2012) Cartilage-specific beta-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 27:1680–1694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Henry SP, Jang CW, Deng JM et al (2009) Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47:805–814

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Henry SP, Liang S, Akdemir KC et al (2012) The postnatal role of Sox9 in cartilage. J Bone Miner Res 27:2511–2525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Grover J, Roughley PJ (2006) Generation of a transgenic mouse in which Cre recombinase is expressed under control of the type II collagen promoter and doxycycline administration. Matrix Biol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  29. Xu L, Polur I, Servais JM et al (2011) Intact pericellular matrix of articular cartilage is required for unactivated discoidin domain receptor 2 in the mouse model. Am J Pathol 179:1338–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15:1061–1069

    Article  CAS  PubMed  Google Scholar 

  31. Flecknell PA (1996) Laboratory animal anesthesia. Academic, London

    Google Scholar 

  32. Glasson SS, Chambers MG, Van Den Berg WB et al (2010) The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18(Suppl 3):S17–S23

    Article  PubMed  Google Scholar 

  33. Loeser RF, Olex AL, McNulty MA et al (2013) Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One 8:e54633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jenkins WL (1987) Pharmacologic aspects of analgesic drugs in animals: an overview. J Am Vet Med Assoc 191:1231–1240

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research related to this topic is supported by National Institutes of Health grants R01-AG-022021 and RC4-AR060546.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirsty L. Culley Ph.D. or Mary B. Goldring Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media. New York

About this protocol

Cite this protocol

Culley, K.L. et al. (2015). Mouse Models of Osteoarthritis: Surgical Model of Posttraumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. In: Westendorf, J., van Wijnen, A. (eds) Osteoporosis and Osteoarthritis. Methods in Molecular Biology, vol 1226. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1619-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1619-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1618-4

  • Online ISBN: 978-1-4939-1619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics