Skip to main content

Computing Ensembles of Transitions with Molecular Dynamics Simulations

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

A molecular understanding of conformational change is important for connecting structure and function. Without the ability to sample on the meaningful large-scale conformational changes, the ability to infer biological function and to understand the effect of mutations and changes in environment is not possible. Our Dynamic Importance Sampling method (DIMS), part of the CHARMM simulation package, is a method that enables sampling over ensembles of transition intermediates. This chapter outlines the context for the method and the usage within the program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCammon JA, Gellin B, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  PubMed  CAS  Google Scholar 

  2. Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X (2011) Biomolecular modeling and simulation: a field coming of age. Q Rev Biophys 1–38

    Google Scholar 

  3. Shaw DE et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  PubMed  CAS  Google Scholar 

  4. Creighton TE (1993) Proteins: structures and molecular properties. Macmillan, New York

    Google Scholar 

  5. Ferguson KM et al (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11:507–517

    Article  PubMed  CAS  Google Scholar 

  6. Perilla JR, Leahy DJ, Woolf TB (2013) Molecular dynamics simulations of transitions for ECD epidermal growth factor receptors show key differences between human and drosophila forms of the receptors. Proteins 81:1113–1126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749

    Article  PubMed  CAS  Google Scholar 

  8. Fischer S (1992) Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem Phys Lett 194:252–261

    Article  CAS  Google Scholar 

  9. Gruia AD, Bondar A-N, Smith JC, Fischer S (2005) Mechanism of a molecular valve in the halorhodopsin chloride pump. Structure 13:617–627

    Article  PubMed  CAS  Google Scholar 

  10. Elber R, Karplus M (1987) A method for determining reaction paths in large molecules: application to myoglobin. Chem Phys Lett 139:375–380

    Article  CAS  Google Scholar 

  11. Olender R, Elber R (1997) Yet another look at the steepest descent path. J Mol Struct 398:63–71

    Article  Google Scholar 

  12. Czerminski R, Elber R (1990) Self-avoiding walk between 2 fixed-points as a tool to calculate reaction paths in large molecular-systems. Int J Quant Chem 24:167–186

    Article  CAS  Google Scholar 

  13. Ulitsky A, Elber R (1990) A new technique to calculate steepest descent paths in flexible polyatomic systems. J Chem Phys 92:1510–1511

    Article  CAS  Google Scholar 

  14. Czerminski R, Elber R (1989) Reaction-path study of conformational transitions and helix formation in a tetrapeptide. Proc Natl Acad Sci U S A 86:6963–6967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Czerminski R, Elber R (1990) Reaction-path study of conformational transitions in flexible systems—applications to peptides. J Chem Phys 92:5580–5601

    Article  CAS  Google Scholar 

  16. Choi C, Elber R (1991) Reaction-path study of helix formation in tetrapeptides—effect of side-chains. J Chem Phys 94:751–760

    Article  CAS  Google Scholar 

  17. Elber R, Shalloway D (2000) Temperature dependent reaction coordinates. J Chem Phys 112:5539–5545

    Article  CAS  Google Scholar 

  18. Berkowitz M, Morgan J, Mccammon J (1983) Generalized Langevin dynamics simulations with arbitrary time-dependent memory kernels. J Chem Phys 78:3256–3261

    Article  Google Scholar 

  19. Paci E, Vendruscolo M, Dobson CM, Karplus M (2002) Determination of a transition state at atomic resolution from protein engineering data. J Mol Biol 324:151–163

    Article  PubMed  CAS  Google Scholar 

  20. Dellago C, Bolhuis PG, Csajka FS, Chandler D (1998) Transition path sampling and the calculation of rate constants. J Chem Phys 108:1964–1977

    Article  CAS  Google Scholar 

  21. Pratt LR (1986) A statistical method for identifying transition states in high dimensional problems. J Chem Phys 85:5045–5048

    Article  CAS  Google Scholar 

  22. Chandler D, Pratt LR (1976) Statistical mechanics of chemical equilibria and intramolecular structures of nonrigid molecules in condensed phases. J Chem Phys 65:2925–2940

    Article  CAS  Google Scholar 

  23. Bolhuis PG, Chandler D (2000) Transition path sampling of cavitation between molecular scale solvophobic surfaces. J Chem Phys 113:8154–8160

    Article  CAS  Google Scholar 

  24. Huo S, Straub JE (1997) The MaxFlux algorithm for calculating variationally optimized reaction paths for conformational transitions in many body systems at finite temperature. J Chem Phys 107:5000–5006

    Article  CAS  Google Scholar 

  25. Ren W, Eijnden EV, Maragakis P, Weinan E (2005) Transition pathways in complex systems: application of the finite-temperature string method to the alanine dipeptide. J Chem Phys 123:134109

    Article  PubMed  Google Scholar 

  26. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125:24106

    Article  PubMed  Google Scholar 

  27. Eastman P, Gronbech-Jensen N, Doniach S (2001) Simulation of protein folding by reaction path annealing. J Chem Phys 114:3823–3841

    Article  CAS  Google Scholar 

  28. Onsager L, Machlup S (1953) Fluctuations and irreversible processes. Phys Rev 91:1505–1512

    Article  CAS  Google Scholar 

  29. Jónsson H, Mills G, Jacobsen KW (1998) Classical and quantum dynamics in condensed phase simulations. In Berne BJ, Coker DF. Proceedings of the International School of Physics. LERICI, Villa Marigola. pp. 385–404

    Google Scholar 

  30. Crehuet R, Field MJ (2003) A temperature-dependent nudged-elastic-band algorithm. J Chem Phys 118:9563–9571

    Article  CAS  Google Scholar 

  31. Peters B, Heyden A, Bell A, Chakraborty A (2004) A growing string method for determining transition states: comparison to the nudged elastic band and string methods. J Chem Phys 120:7877–7886

    Article  PubMed  CAS  Google Scholar 

  32. Trygubenko S, Wales D (2004) A doubly nudged elastic band method for finding transition states. J Chem Phys 120:2082–2094

    Article  PubMed  CAS  Google Scholar 

  33. Mathews D, Case D (2006) Nudged elastic band calculation of minimal energy paths for the conformational change of a GG non-canonical pair. J Mol Biol 357:1683–1693

    Article  PubMed  CAS  Google Scholar 

  34. Kuczera K, Jas GS, Elber R (2009) Kinetics of helix unfolding: molecular dynamics simulations with milestoning. J Phys Chem A 113:7461–7473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Huang H, Ozkirimli E, Post CB (2009) Comparison of three perturbation molecular dynamics methods for modeling conformational transitions. J Chem Theory Comput 5:1304–1314

    Article  CAS  Google Scholar 

  36. Marchi M, Ballone P (1999) Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J Chem Phys 110:3697–3702

    Article  CAS  Google Scholar 

  37. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Huber G (1996) Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J 70:97–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Zhang BW, Jasnow D, Zuckerman DM (2007) Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin. Proc Natl Acad Sci U S A 104:18043–18048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Maragakis P, Karplus M (2005) Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J Mol Biol 352:807–822

    Article  PubMed  CAS  Google Scholar 

  41. van der Vaart A, Karplus M (2005) Simulation of conformational transitions by the restricted perturbation-targeted molecular dynamics method. J Chem Phys 122:114903

    Article  PubMed  Google Scholar 

  42. Echols N, Milburn D, Gerstein M (2003) MolMovDB: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res 31:478–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  44. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114:10235–10253

    Article  PubMed  CAS  Google Scholar 

  46. Perilla JR, Beckstein O, Denning E, Woolf T (2011) Computing ensembles of transitions from stable states: dynamic importance sampling. J Comput Chem 32:196–209

    Article  PubMed  CAS  Google Scholar 

  47. Zuckerman DM, Woolf TB (1999) Dynamic reaction paths and rates through importance-sampled stochastic dynamics. J Chem Phys 111:9475–9484

    Article  CAS  Google Scholar 

  48. Jang H, Woolf TB (2006) Multiple pathways in conformational transitions of the alanine dipeptide: an application of dynamic importance sampling. J Comput Chem 27:1136–1141

    Article  PubMed  CAS  Google Scholar 

  49. Zuckerman DM, Woolf TB (2002) Rapid determination of multiple reaction pathways in molecular systems: the soft-ratcheting algorithm. (eprint). arXiv: physics/0209098

    Google Scholar 

  50. Zuckerman DM, Woolf TB (2000) Efficient dynamic importance sampling of rare events in one dimension. Phys Rev E 63:016702

    Article  Google Scholar 

  51. Woolf T (1998) Path corrected functionals of stochastic trajectories: towards relative free energy and reaction coordinate calculations. Chem Phys Lett 289:433–441

    Article  CAS  Google Scholar 

  52. Wagner W (1987) Unbiased Monte Carlo evaluation of certain functional integrals. J Comput Phys 71:21–33

    Article  Google Scholar 

  53. Swift RV, Mccammon AJ (2009) Substrate induced population shifts and stochastic gating in the PBCV-1 mRNA capping enzyme. J Am Chem Soc 131

    Google Scholar 

  54. Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17:633–640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Dickson BM, Makarov DE, Henkelman G (2009) Pitfalls of choosing an order parameter for rare event calculations. J Chem Phys 131:074108

    Article  PubMed  Google Scholar 

  56. Perilla JR, Woolf TB (2012) Towards the prediction of order parameters from molecular dynamics simulations in proteins. J Chem Phys 136(164101):164101

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xin Y, Doshi U, Hamelberg D (2010) Examining the limits of time reweighting and Kramers’ rate theory to obtain correct kinetics from accelerated molecular dynamics. J Chem Phys 132:224101

    Article  PubMed  Google Scholar 

  58. García A (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett 68:2696–2699

    Article  PubMed  Google Scholar 

  59. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373–380

    Article  PubMed  CAS  Google Scholar 

  60. Singhal N, Snow C, Pande V (2004) Using path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J Chem Phys 121:415–425

    Article  PubMed  CAS  Google Scholar 

  61. Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9:164–169

    Article  PubMed  CAS  Google Scholar 

  62. Petrone P, Pande V (2006) Can conformational change be described by only a few normal modes? Biophys J 90:1583–1593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Lange O, Grubmüller H (2006) Can principal components yield a dimension reduced description of protein dynamics on long time scales? J Phys Chem B 110:22842–22852

    Article  PubMed  CAS  Google Scholar 

  64. Denning EJ, Woolf TB (2010) Cooperative nature of gating transitions in K(+) channels as seen from dynamic importance sampling calculations. Proteins 78:1105–1119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Miloshevsky GV, Jordan PC (2007) Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 15:1654–1662

    Article  PubMed  CAS  Google Scholar 

  66. Florence TF, Xavier G, Osni M, Yves-Henri S (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7

    Article  Google Scholar 

  67. Zhenggo W, Brooks BR (2005) Normal-modes-based prediction of protein conformational changes guided by distance constraints. Biophys J 88:3109–3117

    Article  Google Scholar 

  68. Zheng W, Doniach S (2003) A comparative study of motor-protein motions by using a simple elastic-network model. Proc Natl Acad Sci U S A 100:13253–13258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Kim MK, Chirikjian GS, Jernigan RL (2002) Elastic models of conformational transitions in macromolecules. J Mol Graph Model 21:151–160

    Article  PubMed  CAS  Google Scholar 

  70. Kim MK, Jernigan RL, Chirikjian GS (2002) Efficient generation of feasible pathways for protein conformational transitions. Biophys J 83:1620–1630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Lei M, Zavodszky MI, Kuhn LA, Thorpe MF (2004) Sampling protein conformations and pathways. J Comput Chem 25:1133–1148

    Article  PubMed  CAS  Google Scholar 

  72. Schreiber T (1997) Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys Rev Lett 78:843–846

    Article  CAS  Google Scholar 

  73. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    Article  PubMed  CAS  Google Scholar 

  74. Kaiser A, Schreiber T (2002) Information transfer in continuous processes. Physica D 166:43–62

    Article  CAS  Google Scholar 

  75. Kantz H et al (1993) Nonlinear noise reduction: a case study on experimental data. Phys Rev E 48:1529–1538

    Article  Google Scholar 

  76. Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  77. Stamati H, Clementi C, Kavraki LE (2010) Application of nonlinear dimensionality reduction to characterize the conformational landscape of small peptides. Proteins 78:223–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Barnett L, Barrett AB, Seth AK (2009) Granger causality and transfer entropy are equivalent for Gaussian variables. Phys Rev Lett 103:238701

    Article  PubMed  Google Scholar 

  79. Barrett AB, Barnett L, Seth AK (2010) Multivariate Granger causality and generalized variance. Phys Rev E 81:041907

    Article  Google Scholar 

  80. Hirata Y, Aihara K (2010) Identifying hidden common causes from bivariate time series: a method using recurrence plots. Phys Rev E 81:016203

    Article  Google Scholar 

  81. Jamsek J, Palus M, Stefanovska A (2010) Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Phys Rev E 81:036207

    Article  Google Scholar 

  82. Kamberaj H, van der Vaart A (2009) Extracting the causality of correlated motions from molecular dynamics simulations. Biophys J 97:1747–1755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71:1477–1481

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Woolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Perilla, J.R., Woolf, T.B. (2015). Computing Ensembles of Transitions with Molecular Dynamics Simulations. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics