Skip to main content

miRNAs Expression Profile in Zebrafish Developing Vessels

  • Protocol
  • First Online:
Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1214))

Abstract

In this chapter we will describe in detail a method to identify the expression profile of miRNAs in developing vessels in zebrafish embryonic development using Illumina deep sequencing strategy. We will describe how to obtain RNA from FACS-sorted primary endothelial cells from growing vessels at early stages of development and how to prepare high-quality small RNA libraries using the TruSeq small RNA strategy for Illumina Hi-Seq machine. This methodology can be applied to discover and profile all forms of small noncoding RNA, including novel miRNA and sequence variants as well as quantification of miRNAs differentially expressed in endothelial cells during angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  2. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post- transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  4. Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239

    Article  CAS  PubMed  Google Scholar 

  5. van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280:9330–9335

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  8. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer-dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173

    Article  CAS  PubMed  Google Scholar 

  9. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101:59–68

    Article  CAS  PubMed  Google Scholar 

  10. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    Article  CAS  PubMed  Google Scholar 

  11. Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    Article  CAS  PubMed  Google Scholar 

  13. Metzker ML (2010) Sequencing technologies — the next generation. Nature Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  14. Nicoli S, Knyphausen C-P, Zhu LJ, Lakshmanan A, Lawson ND (2012) miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 22:418–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu A-L et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Nicoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ristori, E., Nicoli, S. (2015). miRNAs Expression Profile in Zebrafish Developing Vessels. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 1214. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1462-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1462-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1461-6

  • Online ISBN: 978-1-4939-1462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics