Skip to main content

Sugar Beet, Energy Beet, and Industrial Beet

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Sugar beet (Beta vulgaris) is a temperate root crop grown primarily as a source of sucrose for human diets. Breeding has focused on sucrose yield, which is simply the product of total root yield times the proportion of sucrose in the harvested roots, minus loss of sucrose in molasses due to impurities. Molasses is a source of betaine, which is recovered as a feed supplement. The non-sucrose dry matter (marc), mostly cell wall material, is used primarily for fodder. Beet juice, molasses, or sucrose solutions are easily fermented into ethanol, while whole beets or pulp is being used for biogas production. Beets have potential as a bio-resource for additional industrial and chemical feedstocks. Sugar beet vinasse is rich in glutamate that may be economically converted and substituted for some high-value petrochemicals. Cell wall material is low in lignin and thus is readily saccharified and fermented and may also serve as an economical resource for monosaccharides for which novel polymers may be developed. Procedures for sugar beet breeding are directly applicable to breed beets for alternative and novel uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biancardi E, Campbell L, Skaracis GN, de Biaggi M. Genetics and breeding of sugarbeet. New Hampshire: Science Publishers; 2005.

    Google Scholar 

  2. Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P. Chapter 6: Sugar beet. In: Bradshaw JE, editor. Tuber and root crops. Handbook of plant breeding 7. New York: Springer; 2010. p. 173–220.

    Google Scholar 

  3. Draycott AP. Sugar beet. Oxford: Blackwell; 2006.

    Google Scholar 

  4. Schiweck H, Clarke M, Pollach G. Sugar. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2007. doi: 10.1002/14356007.a25_345.pub2.

    Google Scholar 

  5. Kumar P, Bhattacharya A, Singh R. Chapter 29. Sugarbeet. In: Kole C, Joshi CP, Shonnard DR, editors. Handbook of bioenergy crop plants. Boca Raton: CRC Press; 2012. p. 709–15.

    Google Scholar 

  6. Duke JA. Handbook of energy crops [Internet]. West Lafayette: Center for New Crops & Plant Products, Purdue University; 2011. NewCROPâ„¢, Crop Index Available from: http://www.hort.purdue.edu/newcrop/duke_energy/Beta_vulgaris.html. Last Accessed 7 Jan 2013

  7. Bowen E, Kennedy SC, Miranda K. Ethanol from sugar beets: a process and economic analysis [internet]. Worchester: Worcester Polytechnic Institute; 2010. Available from: http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-165653/unrestricted/Ethanol_from_Sugar_Beets_-_A_Process_and_Economic_Analysis.pdf

  8. Clarke MA, Edye LA. Chapter 16: Sugar beet and sugarcane as renewable resources. In: Fuller G, McKeon TA, Bills DD, editors. Agricultural materials as renewable resources, ACS symposium series. Washington, DC: American Chemical Society; 1996. p. 229–47.

    Google Scholar 

  9. Othmer DF‬, Seidel A‬, Kirk‬ RE. Kirk-Othmer food and feed technology. Hoboken: Wiley-Interscience‬‬‬‬‬‬‬‬‬; 2008.

    Google Scholar 

  10. Theurer JC, Doney DL, Smith GA, Lewellen RT, Hogaboam GJ, Bugbee WM, Gallian JJ. Potential ethanol production from sugar beet and fodder beet. Crop Sci. 1987;27:1034–40.

    CAS  Google Scholar 

  11. Doney DL, Theurer JC. Potential of breeding for ethanol fuel in sugar beet. Crop Sci. 1984;24:255–7.

    CAS  Google Scholar 

  12. Elbehri A, Umstaetter J, Kelch D. The EU sugar policy regime and implications of reform. USDA Economic Research Service, Economic Research Report Number 59. July 2008.

    Google Scholar 

  13. Dillen K, Demont M, Tollens E. European sugar policy reform and agricultural innovation. Can J Agric Econ. 2008;56:533–53.

    Google Scholar 

  14. Biancardi E, Panella LW, Lewellen RT. Beta maritima: the origin of beets. New York: Springer; 2012.

    Google Scholar 

  15. McGrath JM, Panella LW, Frese L. Beta. In: Kole C, editor. Wild crop relatives: genomic & breeding resources, industrial crops. Heidelberg: Springer; 2011. p. 1–28.

    Google Scholar 

  16. Panella L, Kaffka SR. Sugar beet (Beta vulgaris L) as a biofuel feedstock in the United States. In: Eggleston G, editor. Sustainability of the sugar and sugar-ethanol industries, ACS symposium series. Washington, DC: American Chemical Society; 2010. p. 163–75.

    Google Scholar 

  17. Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE. Complex pigment evolution in the Caryophyllales. New Phytol. 2011;190:854–64.

    CAS  PubMed  Google Scholar 

  18. Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet. 2012;44:816–20.

    CAS  PubMed  Google Scholar 

  19. Nges IA, Björn A, Björnsson L. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresour Technol. 2012;118:445–54.

    CAS  PubMed  Google Scholar 

  20. de Vries SC, van de Ven GWJ, van Ittersum MK, Giller KE. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy. 2010;34:588–601.

    Google Scholar 

  21. Kreuger E, Nges IA, Björnsson L. Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels. 2011;4:44.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. University of Kentucky Center for Applied Energy Research. Beet energy research – cooperative research could result in alternative crop for ethanol. 2012. http://www.caer.uky.edu/discoveries/energy-beet.shtml. Accessed 29 Dec 2012.

  23. Kirchhoff M, Svirshchevskaya A, Hoffmann C, Schechert A, Jung C, Kopisch Obuch FJ. High degree of genetic variation of winter hardiness in a panel of Beta vulgaris L. Crop Sci. 2012;52:179–88.

    Google Scholar 

  24. Maung TA, Gustafson CR. The economic feasibility of sugar beet biofuel production in central North Dakota. Biomass Bioenergy. 2011;35:3737–47.

    Google Scholar 

  25. Doney DL. USDA-ARS sugarbeet releases. J Sugarbeet Res. 1995;32:229–57.

    Google Scholar 

  26. Li JQ, Luhmann AK, Weissleder K, Stich B. Genome-wide distribution of genetic diversity and linkage disequilibrium in elite sugar beet germplasm. BMC Genomics. 2011;12:484.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. McGrath JM, Saccomani M, Stevanato P, Biancardi E. Beet. In: Kole C, editor. Genome mapping and molecular breeding in plants, volume: 5: vegetables. New York: Springer; 2007. p. 191–207.

    Google Scholar 

  28. Mita G, Dani M, Casciari P, Pasquali A, Selva E, Minganti C, Piccardi P. Assessment of the degree of genetic variation in beet based on RFLP analysis and the taxonomy of Beta. Euphytica. 1991;55:1–6.

    CAS  Google Scholar 

  29. Saccomani M, Stevanato P, Trebbi D, McGrath JM, Biancardi E. Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica. 2009;169:19–29.

    Google Scholar 

  30. Panella L, Lewellen RT. Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica. 2007;154:383–400.

    CAS  Google Scholar 

  31. McGrath JM, Derrico CA, Yu Y. Genetic diversity in selected, historical USDA sugarbeet germplasm releases and Beta vulgaris ssp. maritima. Theor Appl Genet. 1999;98:968–76.

    Google Scholar 

  32. Roundy TE, Theurer JC. Inheritance of a yellow-leaf mutant and a pollen fertility restorer in sugarbeet. Crop Sci. 1974;14:62–3.

    Google Scholar 

  33. Watson JF, Goldman IL. Inheritance of a gene conditioning blotchy root color in table beet (Beta vulgaris L.). J Hered. 1997;88:540–3.

    Google Scholar 

  34. Büttner B, Abou-Elwafa SF, Zhang W, Jung C, Müller A. A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theor Appl Genet. 2010;121:1117–31.

    PubMed  Google Scholar 

  35. Jung C, Hohmann U. Establishment of a TILLING platform for sugar beet. In: Plant and animal genome conference XIV; 2006. W184, San Diego, California, USA.

    Google Scholar 

  36. McGrath JM, Koppin TK, Duckert TM. Breeding for genetics: development of recombinant inbred lines (RILs) for gene discovery and deployment. J Sugar Beet Res. 2005;42:49.

    Google Scholar 

  37. Butterfass T. Die Chloroplastenzahlen in verschiedenartigen Zellen trisomer Zuckerruben (Beta vulgaris L.). Z Bot. 1964;52:46–77. German.

    Google Scholar 

  38. Simko I, Eujayl I, van Hintum TJL. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Sci. 2012;184:54–62.

    CAS  PubMed  Google Scholar 

  39. Schneider K, Weisshaar B, Borchardt DC, Salamini F. SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes. Mol Breed. 2001;8:63–74.

    CAS  Google Scholar 

  40. Schneider K, Kulosa D, Soerensen TR, Mohring S, Heine M, Durstewitz G, Polley A, Weber E, Jamsari E, Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung C, Ganal M. Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet. 2007;115:601–15.

    CAS  PubMed  Google Scholar 

  41. McGrath JM, Fugate KK. Chapter 30: Analysis of sucrose from sugar beet. In: Preedy VR, editor. Dietary sugars chemistry, analysis, function and effects, Food and nutritional components in focus, vol. 3. Cambridge: Royal Society of Chemistry Publishing; 2012. p. 526–45.

    Google Scholar 

  42. Harveson RM, Hanson LE, Hein GL. Compendium of beet diseases and pests. 2nd ed. St. Paul: APS Press; 2009.

    Google Scholar 

  43. Pavli OI, Tampakaki AP, Skaracis GN. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One. 2012;7:e51414.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. McGrath JM. Assisted breeding in beets. Sugar Tech. 2011;12:187–93.

    Google Scholar 

  45. Alexander JT. Factors affecting quality. In: Johnson RT, Alexander JT, Bush GE, Hawkes GR, editors. Advances in sugar beet production. Ames: Iowa State University Press; 1971. p. 371–80.

    Google Scholar 

  46. Hoffmann CM, Kenter C, Bloch D. Marc concentration of sugar beet (Beta vulgaris L) in relation to sucrose storage. J Sci Food Agric. 2005;85:459–65.

    CAS  Google Scholar 

  47. Hoffmann CM. Root quality of sugarbeet. Sugar Tech. 2010;12:276–87.

    CAS  Google Scholar 

  48. Bloch D, Hoffmann C. Seasonal development of genotypic differences in sugar beet (Beta vulgaris L.) and their interaction with water supply. J Agron Crop Sci. 2005;191:263–72.

    CAS  Google Scholar 

  49. Hoffmann CM, Huijbregts T, van Swaaij N, Jansen R. Impact of different environments in Europe on yield and quality of sugar beet genotypes. Eur J Agron. 2009;30:17–26.

    CAS  Google Scholar 

  50. Winter H, Huber SC. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol. 2000;35:253–89.

    CAS  PubMed  Google Scholar 

  51. Lunn JE, MacRae E. New complexities in the synthesis of sucrose. Curr Opin Plant Biol. 2003;6:208–14.

    CAS  PubMed  Google Scholar 

  52. Etxeberria E, Pozueta-Romero J, Gonzalez P. In and out of the plant storage vacuole. Plant Sci. 2012;190:52–61.

    CAS  PubMed  Google Scholar 

  53. Kenter C, Hoffmann CM. Seasonal patterns of sucrose concentration in relation to other quality parameters of sugar beet (Beta vulgaris L.). J Sci Food Agric. 2006;86:62–70.

    CAS  Google Scholar 

  54. Trebbi D, McGrath JM. Functional differentiation of the sugar beet root system as indicator of developmental phase change. Physiol Plant. 2009;135:84–97.

    CAS  PubMed  Google Scholar 

  55. Schneider K, Schafer-Pregl R, Borchardt DC, Salamini F. Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet. 2002;104:1107–13.

    CAS  PubMed  Google Scholar 

  56. Doney DL, Wvse RE, Theurer JC. The relationship between cell size, yield, and sucrose concentration of the sugarbeet root. Can J Plant Sci. 1981;61:447–53.

    Google Scholar 

  57. Trebbi D. Genetic analysis of sucrose accumulation in sugar beet (Beta vulgaris L.) [dissertation]. East Lansing: Michigan State University; 2005.

    Google Scholar 

  58. Artschwager E. Anatomy of the vegetative organs of the sugar beet. J Agric Res. 1926;33:143–76.

    Google Scholar 

  59. Hayward HE. The structure of economic plants: chapter IX: Chenopodiaceae. New York: Macmillan; 1938.

    Google Scholar 

  60. Gurel E, Gurel S, Lemaux P. Biotechnology applications for sugar beet. Crit Rev Plant Sci. 2008;27:108–40.

    CAS  Google Scholar 

  61. Lammens TM, Potting J, Sanders JPM, De Boer IJM. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents. Environ Sci Technol. 2011;45:8521–8.

    CAS  PubMed  Google Scholar 

  62. Mäkelä P. Agro-industrial uses of glycinebetaine. Sugar Tech. 2004;6:207–12.

    Google Scholar 

  63. Escudero I, Ruiz MO. Extraction of betaine from beet molasses using membrane contactors. J Membr Sci. 2011;372:258–68.

    CAS  Google Scholar 

  64. Cai YZ, Sun M, Corke H. Antioxidant activity of betalains from plants of the Amaranthaceae. J Ag Food Chem. 2003;51:2288–94.

    CAS  Google Scholar 

  65. Stintzing FC, Carle R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol. 2004;15:19–38.

    CAS  Google Scholar 

  66. Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80:539–49.

    CAS  PubMed  Google Scholar 

  67. von Elbe JH, Pasch JH, Adams JP. Betalains as food colorants. Proc IV Int Congress Food Sci Tech. 1974;1:485–92.

    Google Scholar 

  68. Nemzera B, Pietrzkowski Z, Spórna A, Stalica P, Thresher W, Michałowski T, Wybraniec S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011;127:42–53.

    Google Scholar 

  69. Gaertner VL, Goldman IL. Pigment distribution and total dissolved solids of selected cycles of table beet from a recurrent selection program for increased pigment. J Am Soc Hort Sci. 2005;130:424–33.

    CAS  Google Scholar 

  70. Bellin D, Schulz B, Soerensen TR, Salamini F, Schneider K. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. J Exp Botany. 2007;58:699–715.

    CAS  Google Scholar 

  71. Koga N, Takahashi H, Okazaki K, Kajiyama T, Kobayashi S. Potential agronomic options for energy-efficient sugar beet-based bioethanol production in northern Japan. GCB Bioenergy. 2009;1:220–9.

    CAS  Google Scholar 

  72. Dohm JC, Lange C, Holtgrawe D, Rosleff Sorensen T, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). Plant J. 2012;70:528–40.

    CAS  PubMed  Google Scholar 

  73. McGrath JM, Drou N, Waite D, Swarbreck D, Mutasa-Gottgens E, Barnes S, Townsend B. The ‘C869’ sugar beet genome: a draft assembly. Int Plant Anim Genome XXI. 2013;2013:W735.

    Google Scholar 

  74. Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, Reif JC. Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet. 2011;123:1121–31.

    PubMed  Google Scholar 

  75. Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B. A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics. 2012;13:99.

    PubMed Central  PubMed  Google Scholar 

  76. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science. 2010;330:1397–400.

    CAS  PubMed  Google Scholar 

  77. de los Reyes BG, Myers SJ, McGrath JM. Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics. 2003;269:692–8.

    CAS  PubMed  Google Scholar 

  78. Starke P, Hoffmann C. Sugarbeet as a substrate for biogas production. Zuckerindustrie. 2011;136:242–50.

    CAS  Google Scholar 

  79. Campbell LG. Processing quality. In: Biancardi E, Campbell L, Skaracis GN, de Biaggi M, editors. Genetics and breeding of sugarbeet. New Hampshire: Science Publishers; 2005. p. 126–9.

    Google Scholar 

  80. Carter JN. Sucrose production as affected by root yield and sucrose concentration of sugarbeet. J Am Soc Sugar Beet Technol. 1987;24:14–31.

    CAS  Google Scholar 

  81. Bergen P. Seasonal patterns of sucrose accumulation and weight increase in sugar beets. J Am Soc Sugar Beet Technol. 1967;14:538–45.

    Google Scholar 

  82. Milford GFJ. The growth and development of the storage root of sugar beet. Ann Appl Biol. 1973;75:427–38.

    Google Scholar 

  83. Wyse R. Parameters controlling sucrose content and yield of sugarbeet roots. J Am Soc Sugar Beet Technol. 1979;20:368–85.

    CAS  Google Scholar 

  84. Werpy T, Peterson G. Top value added chemicals from biomass. Volume I: results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy (DOE), National Renewable Energy Laboratory; 2004. doi: 10.2172/15008859.

  85. Mäck G, Hoffmann CM, Märländer B. Nitrogen compounds in organs of two sugar beet genotypes (Beta vulgaris L.) during the season. Field Crops Res. 2007;102:210–8.

    Google Scholar 

  86. Hoffmann CM, Märländer B. Composition of harmful nitrogen in sugar beet (Beta vulgaris L.) – amino acids, betaine, nitrate – as affected by genotype and environment. Eur J Agron. 2005;22:255–65.

    CAS  Google Scholar 

  87. Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy. 2012;44:168–81.

    CAS  Google Scholar 

  88. Renard CMGC, Jarvis MC. A cross-polarization, magic-angle-spinning, C-13-nuclear-magnetic-resonance study of polysaccharides in sugar beet cell walls. Plant Physiol. 1999;119:1315–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Zykwinska A, Rondeau-Mouro C, Garnier C, Thibault JF, Ralet MC. Alkaline extractability of pectic arabinan and galactan and their mobility in sugar beet and potato cell walls. Carbohydr Polym. 2006;65:510–20.

    CAS  Google Scholar 

  90. Oosterveld A, Beldman G, Schols HA, Voragen AGJ. Arabinose and ferulic acid rich pectic polysaccharides extracted from sugar beet pulp. Carbohydr Res. 1996;288:143–53.

    CAS  Google Scholar 

  91. Dea ICM, Madden JK. Acetylated pectic polysaccharides of sugar beet. Food Hydrocolloids. 1986;1:71–88.

    CAS  Google Scholar 

  92. Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ. Evidence for in vitro binding of pectin side chains to cellulose. Plant Phys. 2005;139:397–407.

    CAS  Google Scholar 

  93. Wang T, Zabotina O, Hong M. Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry. 2012;51:9846–56.

    CAS  PubMed  Google Scholar 

  94. Williams PA, Sayers C, Viebke C, Senan C, Mazoyer J, Boulenguer P. Elucidation of the emulsification properties of sugar beet pectin. J Agric Food Chem. 2005;53:3592–7.

    CAS  PubMed  Google Scholar 

  95. Ishii T. Structure and function of feruloylated polysaccharides. Plant Sci. 1997;127:111–27.

    CAS  Google Scholar 

  96. Colquhoun I, Ralet M-C, Thibault J-F, Faulds CB, Williamson G. Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr Res. 1994;263:243–56.

    CAS  PubMed  Google Scholar 

  97. Ralet M-C, Thibault J-F, Faulds CB, Williamson G. Isolation and purification of feruloylated oligosaccharides from cell walls of sugar-beet pulp. Carbohydr Res. 1994;263:227–41.

    CAS  PubMed  Google Scholar 

  98. Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 2004;161:641–75.

    CAS  Google Scholar 

  99. Marry M, Roberts K, Jopson SJ, Huxham M, Jarvis MC, Corsar J, Robertson E, McCann MC. Cell-cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross links. Physiol Plant. 2006;126:243–56.

    CAS  Google Scholar 

  100. Waldron KW, Ng A, Parker ML, Parr AJ. Ferulic acid dehydrodimers in the cell walls of Beta vulgaris and their possible role in texture. J Sci Food Agric. 1997;74:221–8.

    CAS  Google Scholar 

  101. Ishii T. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res. 1991;219:15–22.

    CAS  PubMed  Google Scholar 

  102. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci U S A. 2012;109:989–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Dinand E, Chanzy H, Vignon MR. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloid. 1999;13:275–83.

    CAS  Google Scholar 

  104. Kühnel S, Schols HA, Gruppen H. Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol Biofuel. 2011;4:14.

    Google Scholar 

  105. Hartley RD, Morrison WH, Borneman WS, Rigsby LL, O’Neill M, Hanna WW, Akin DE. Phenolic constituents of cell wall types of normal and brown midrib mutants of pearl millet (Pennisetum glaucum (L) R Br) in relation to wall degradability. J Sci Food Agric. 1992;59:211–6.

    CAS  Google Scholar 

  106. Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE. The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr Biol. 2012;22:1095–101.

    CAS  PubMed  Google Scholar 

  107. Kockelmann A, Tilcher R, Fischer U. Seed production and processing. Sugar Tech. 2010;12:267–75.

    CAS  Google Scholar 

  108. Mutasa-Göttgens ES, Qi A, Wenying Z, Schulze-Buxloh G, Jennings A, Hohmann U, Müller AE, Hedden P. Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants. 2010; plq012. doi: 10.1093/aobpla/plq012.

  109. Amon T, Amon B, Kryvoruchko V, Machmuller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Potsch E, Wagentristl H, Schreiner M, Zollitsch W. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol. 2007;98:3204–12.

    CAS  PubMed  Google Scholar 

  110. Campbell LG, Klotz KL. Chapter 15: Storage. In: Draycott AP, editor. Sugar beet. Oxford: Blackwell Publishing; 2006. p. 387–408.

    Google Scholar 

  111. Shapouri H, Salassi M, Fairbanks JN. The economic feasibility of ethanol production from sugar in the United States [internet]. Joint publication of OEPNU, OCE, USDA, and LSU: online. http://www.usda.gov/oce/reports/energy/EthanolSugarFeasibilityReport3.pdf. Accessed 29 Dec 2012

  112. Carioca JOB, Leal MRLV. 3.04 – ethanol production from sugar-based feedstocks. In: Butler M, Webb C, Moreira A, editors. Comprehensive biotechnology. 2nd ed. Oxford: Elsevier; 2011. p. 27–35.

    Google Scholar 

  113. Panella L, Kaffka SR, Lewellen RT, McGrath JM, Metzger MS, Strausbaugh CA. Sugarbeet. In: Smith S, Diers B, Specht J, Carver B, editors. Yield gains in major U.S. field crops, CSSA special publications 33. Madison: American Society of Agronomy; 2014.

    Google Scholar 

  114. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2013;505:546–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mitchell McGrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

McGrath, J.M., Townsend, B.J. (2015). Sugar Beet, Energy Beet, and Industrial Beet. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_5

Download citation

Publish with us

Policies and ethics