Skip to main content

Nanostructure Imaging Mass Spectrometry: The Role of Fluorocarbons in Metabolite Analysis and Yoctomole Level Sensitivity

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1203))

Abstract

Nanostructure imaging mass spectrometry (NIMS) has become an effective technology for generating ions in the gas phase, providing high sensitivity and imaging capabilities for small molecules, metabolites, drugs, and drug metabolites. Specifically, laser desorption from the nanostructure surfaces results in efficient energy transfer, low background chemical noise, and the nondestructive release of analyte ions into the gas phase. The modification of nanostructured surfaces with fluorous compounds, either covalent or non-covalent, has played an important role in gaining high efficiency/sensitivity by facilitating analyte desorption from the nonadhesive surfaces, and minimizing the amount of laser energy required. In addition, the hydrophobic fluorinated nanostructure surfaces have aided in concentrating deposited samples into fine micrometer-sized spots, a feature that further facilitates efficient desorption/ionization. These fluorous nanostructured surfaces have opened up NIMS to very broad applications including enzyme activity assays and imaging, providing low background, efficient energy transfer, nondestructive analyte ion generation, super-hydrophobic surfaces, and ultra-high detection sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JJ (1910) Rays of positive electricity. Phil Mag 20:752–767

    Article  Google Scholar 

  2. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  3. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  4. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399:243–246

    Article  PubMed  CAS  Google Scholar 

  5. Trauger SA, Go EP, Shen ZX, Apon JV, Compton BJ, Bouvier ESP, Finn MG, Siuzdak G (2004) High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal Chem 76:4484–4489

    Article  PubMed  CAS  Google Scholar 

  6. Nordstrom A, Apon JV, Uritboonthal W, Go EP, Siuzdak G (2006) Surfactant-enhanced desorption/ionization on silicon mass spectrometry. Anal Chem 78:272–278

    Article  PubMed  Google Scholar 

  7. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036

    Article  PubMed  CAS  Google Scholar 

  8. Yanes O, Woo HK, Northen TR, Oppenheimer SR, Shriver L, Apon J, Estrada MN, Potchoiba MJ, Steenwyk R, Manchester M, Siuzdak G (2009) Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 81:2969–2975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Patti GJ, Woo HK, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon JV, Steenwyk R, Manchester M, Siuzdak G (2010) Detection of carbohydrates and steroids by cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for biofluid analysis and tissue imaging. Anal Chem 82:121–128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem 83:2–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kruse RA, Li X, Bohn PW, Sweedler JV (2001) Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 73:3639–3645

    Article  PubMed  CAS  Google Scholar 

  12. Northen T, Woo H-K, Northen M, Nordström A, Uritboonthail W, Turner K, Siuzdak G (2007) High surface area of porous silicon drives desorption of intact molecules. J Am Soc Mass Spectrom 18:1945–1949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Peterson DS (2007) Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 26:19–34

    Article  PubMed  CAS  Google Scholar 

  14. Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A (2012) Laser-nanostructure interactions for ion production. Phys Chem Chem Phys 14:8453–8471

    Article  CAS  Google Scholar 

  15. Go EP, Apon JV, Luo GH, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646

    Article  PubMed  CAS  Google Scholar 

  16. Walker BN, Stolee JA, Pickel DL, Retterer ST, Vertes A (2010) Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C 114:4835–4840

    Article  CAS  Google Scholar 

  17. Chen Y, Vertes A (2006) Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal Chem 78:5835–5844

    Article  PubMed  CAS  Google Scholar 

  18. Two different individuals (S. Trauger and J. Apon) performed the experiments independently.

    Google Scholar 

  19. Two different individuals (W. Uritboonthai and O. Yanes) performed the experiments independently.

    Google Scholar 

  20. Keller BO, Li L (2001) Detection of 25,000 molecules of substance P by MALDI-TOF mass spectrometry and investigations into the fundamental limits of detection in MALDI. J Am Soc Mass Spectrom 12:1055–1063

    Article  CAS  Google Scholar 

  21. Walker BN, Stolee JA, Vertes A (2012) Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem 84:7756–7762

    Article  PubMed  CAS  Google Scholar 

  22. Aerni H-R, Cornett DS, Caprioli RM (2005) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834

    Article  Google Scholar 

  23. Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2012) Chemical analysis of single cells. Anal Chem 85:522–542

    Article  PubMed  Google Scholar 

  24. O’Brien PJ, Lee M, Spilker ME, Zhang C, Yan Z, Nicholls TC, Li W, Johnson CH, Patti GJ, Siuzdak G (2013) Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 1:4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work conducted by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by the California Institute of Regenerative Medicine Grant TR1-01219 and the National Institutes of Health grants R24 EY017540-04, P30 MH062261-10, and P01 DA026146-02. Financial support was also received from the Department of Energy grants FG02-07ER64325 and DE-AC0205CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Siuzdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kurczy, M.E., Northen, T.R., Trauger, S.A., Siuzdak, G. (2015). Nanostructure Imaging Mass Spectrometry: The Role of Fluorocarbons in Metabolite Analysis and Yoctomole Level Sensitivity. In: He, L. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 1203. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1357-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1357-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1356-5

  • Online ISBN: 978-1-4939-1357-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics