Skip to main content

Acquisition of Novel and Complex Motor Skills: Stable Solutions Where Intrinsic Noise Matters Less

  • Conference paper
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 826))

Abstract

Most experimental paradigms in motor neuroscience have used relatively focal and experimentally constrained tasks to allow precise measurement and experimental control. Therefore, practice-induced improvements and learning have been confined to relatively simple changes or adaptations to external perturbations. Here, we propose an approach to study more complex skills that are novel and require more extensive practice, leading to quantitative and qualitative changes in overt performance. Central to these skills is that they have extrinsic redundancy that allows exploration and exploitation of dynamic properties of the task. We hypothesize that in such skills, humans seek stable solutions that are robust to perturbations that make their intrinsic noise matter less. Three experimental paradigms exemplify our model-based and hypothesis-driven approach to skill acquisition: discrete throwing, rhythmic ball bouncing, and complex object manipulation. In skittles, a throwing skill, results show that actors are sensitive to the error tolerance afforded by the task. In ball bouncing, we show that subjects exploit the dynamic stability of the task, where small errors and noise self-stabilize without explicit corrections. In manipulating a “cup of coffee,” subjects learn to optimize the safety or energy margins and scale it to their intrinsic variability. This research presents new experimental paradigms that characterize the behavioral correlates of neuroplasticity in more complex skill acquisition. This fundamental work is a platform for future work to develop behavioral interventions for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo D, Davids K, Hristovski R. 2006. The ecological dynamics of decision making in sport. Psychol Sport Exerc 7(6):653–76.

    Article  Google Scholar 

  • Baraduc P, Lang N, Rothwell JC, Wolpert DM. 2004. Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14(3):252–6.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein NA. The co-ordination and regulation of movements. Oxford, UK: Pergamon; 1967.

    Google Scholar 

  • Cesqui B, d’Avella A, Portone A, Lacquaniti F. 2012. Catching a ball at the right time and place: individual factors matter. PLoS One 7(2):e31770.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chu VWT, Sternad D, Sanger TD. 2013. Healthy and dystonic children compensate for changes in motor variability. J Neurophysiol 109:2169–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen RG, Sternad D. 2009. Variability in motor learning: relocating, channeling and reducing noise. Exp Brain Res 193(1):69–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen RG, Sternad D. 2012. State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing. J Neurophysiol 107(2):618–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R. 2003. Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89(1):168–76.

    Article  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E. 2003. Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neurosci 6(3):300–8.

    Article  PubMed  Google Scholar 

  • Dijkstra TMH, Katsumata H, De Rugy A, Sternad D. 2004. The dialogue between data and model: passive stability and relaxation behavior in a ball bouncing task. Nonlinear Stud 11(3):319–45.

    Google Scholar 

  • Donchin O, Francis JT, Shadmehr R. 2003. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23(27):9032–45.

    PubMed  CAS  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. 2004. Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–2.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlenspiel F, Wei K, Sternad D. 2010. Open-loop, closed-loop and compensatory control: performance improvement under pressure in a rhythmic task. Exp Brain Res 201(4):729–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faisal AA, Selen LPJ, Wolpert DM. 2008. Noise in the nervous system. Nature Rev Neurosci 9(4):292–303.

    Article  CAS  Google Scholar 

  • Flanagan JR, Wing AM. 1997. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–28.

    PubMed  CAS  Google Scholar 

  • Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York, NY: Springer; 1983.

    Book  Google Scholar 

  • Hasson CJ, Hogan N, Sternad D. Human control of dynamically complex objects. Proceedings of the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; 2012 June 24–28; Rome, Italy: IEEE; 2012a.

    Google Scholar 

  • Hasson CJ, Shen T, Sternad D. 2012b. Energy margins in dynamic object manipulation. J Neurophysiol 108(5):1349–65.

    Article  Google Scholar 

  • Hasson CJ, Sternad D. 2014. Safety margins in older adults increase with improved control of a dynamic object. Front Comp Neurosci 6: doi: 10.3389/fnagi.2014.00158

    Google Scholar 

  • Johansson RS, Westling G. 1984. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3):550–64.

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. 1998. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Nat Acad Sci U S A 95(3):861–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Katsumata H, Zatsiorsky V, Sternad D. 2003. Control of ball-racket interactions in rhythmic propulsion of elastic and non-elastic balls. Exp Brain Res 149(1):17–29.

    PubMed  Google Scholar 

  • Landi SM, Baguear F, Della-Maggiore V. 2011. One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J Neurosci 31(33):11808–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • May RM. 1976. Simple mathematical models with very complicated dynamics. Nature 261(5560):459–67.

    Article  PubMed  CAS  Google Scholar 

  • Mayer HC, Krechetnikov R. 2012. Walking with coffee: why does it spill? Phys Rev E 85(4):046117.

    Article  CAS  Google Scholar 

  • Morasso P. 1981. Spatial control of arm movements. Exp Brain Res 42(2):223–7.

    Google Scholar 

  • Morice AHP, Siegler IA, Bardy BG, Warren WH. 2007. Learning new perception–action solutions in virtual ball bouncing. Exp Brain Res 181(2):249–65.

    Article  PubMed  Google Scholar 

  • Müller H, Loosch E. 1999. Functional variability and an equifinal path of movement during targeted throwing. J Hum Mov Studies 36:103–26.

    Google Scholar 

  • Müller H, Sternad D. 2003. A randomization method for the calculation of covariation in multiple nonlinear relations: illustrated with the example of goal-directed movements. Biol Cybern 89(1):22–33.

    PubMed  Google Scholar 

  • Müller H, Sternad D. 2004a. Accuracy and variability in goal oriented movements–decomposing gender differences in children. J Human Kinetics 12:31–50.

    Google Scholar 

  • Müller H, Sternad D. 2004b. Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J Exp Psychol: Hum Percept Perform 30(1):212–33.

    Google Scholar 

  • Müller H, Sternad D. Motor learning: changes in the structure of variability in a redundant task. In: Sternad D, editor. Progress in Motor Control—A Multidisciplinary Perspective. New York, NY: Springer; 2009. p. 439–56.

    Google Scholar 

  • Nourritt-Lucas D, Zelic G, Deschamps T, Hilpron M, Delignières D. 2013. Persistent coordination patterns in a complex task after 10 years delay. Hum Mov Sci 32(6):1365–78.

    Article  Google Scholar 

  • Park S-W, Dijkstra TMH, Sternad D. 2013. Learning to never forget—time scales and specificity of long-term memory of a motor skill. Front Comp Neurosci 7: doi: 10.3389/fncom.2013.00111.

    Google Scholar 

  • Schaal S, Atkeson CG, Sternad D. 1996. One-handed juggling: a dynamical approach to a rhythmic movement task. J Motor Behav 28(2):165–83.

    Article  Google Scholar 

  • Scholz JP, Schöner G. 1999. The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306.

    Article  PubMed  CAS  Google Scholar 

  • Shabbott BA, Sainburg RL. 2010. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Exp Brain Res 203(1):75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadmehr R, Moussavi ZMK. 2000. Spatial generalization from learning dynamics of reaching movements. J Neurosci 20(20):7807–15.

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA. 1994. Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5):3208–24.

    PubMed  CAS  Google Scholar 

  • Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML. 2005. The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res 164(2):260–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternad D, Duarte M, Katsumata H, Schaal S. 2000. Dynamics of a bouncing ball in human performance. Phys Rev E 63(1):011902.

    Article  Google Scholar 

  • Sternad D, Duarte M, Katsumata H, Schaal S. 2001. Bouncing a ball: tuning into dynamic stability. J Exp Psychol: Hum Percept Perform 27(5):1163.

    CAS  Google Scholar 

  • Sternad D, Park S-W, Müller H, Hogan N. 2010. Coordinate dependence of variability analysis. PLoS Comp Bio 6(4):e1000751.

    Article  Google Scholar 

  • Sternad D, Abe MO, Hu X, Müller H. 2011. Neuromotor noise, error tolerance and velocity-dependent costs in skilled performance. PLoS Comp Bio 7(9):e1002159.

    Article  CAS  Google Scholar 

  • Swift EJ. 1910. Relearning a skillful act. An experimental study in neuro-muscular memory. Psychol Bull 7(1):17.

    Article  Google Scholar 

  • Thoroughman KA, Shadmehr R. 2000. Learning of action through adaptive combination of motor primitives. Nature 407(6805):742–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ting LH. 2007. Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Prog Brain Res 165:299–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tufillaro NB, Abbott T, Reilly J. An experimental approach to nonlinear dynamics and chaos. Redwood City, CA: Addison-Wesley; 1992.

    Google Scholar 

  • Waters-Metenier S, Husain M, Wiestler T, Diedrichsen J. 2014. Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning. J Neurosci 34(3):1037–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei K, Dijkstra TMH, Sternad D. 2007. Passive stability and active control in a rhythmic task. J Neurophysiol 98(5):2633–46.

    Article  PubMed  Google Scholar 

  • Wing AM, Kristofferson AB. 1973. Response delays and the timing of discrete motor responses. Percept Psychophys 14(1):5–12.

    Article  Google Scholar 

  • Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML. 2012. Practicing elements versus practicing coordination: changes in the structure of variance. J Motor Behav 44(6):471–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Child Health and Human Development (NICHD) R01 HD045639, National Science Foundation NSF-DMS0928587, and American Heart Association AHA-11SDG7270001, awarded to Dagmar Sternad. Fellowships from the Northeastern University Graduate School of Engineering and The Mathworks supported Meghan Huber. A Ruth L. Kirschstein National Research Service Award supported Christopher J. Hasson (1F32AR061238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Sternad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Sternad, D., Huber, M., Kuznetsov, N. (2014). Acquisition of Novel and Complex Motor Skills: Stable Solutions Where Intrinsic Noise Matters Less. In: Levin, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 826. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1338-1_8

Download citation

Publish with us

Policies and ethics