Skip to main content

Pharmacometrics in Bacterial Infections

  • Chapter
  • First Online:
Applied Pharmacometrics

Abstract

Pharmacometrics plays an important role in rational dosing design of antimicrobial therapy by defining the relationship between dose, dosing interval, drug concentration, bacterial response, infection outcome, and toxicity, as well as the variability surrounding these variables. Modeling and simulation is becoming more extensively used to characterize antimicrobial strategies to combat emergence of drug-resistant bacteria, which is imposing a high cost on patient survivability and the overall health-care system. In this chapter, we discuss how pharmacometric approaches are being utilized to tackle these challenges. The approaches in designing treatment strategies using minimum inhibitory concentrations and in vitro time course of bacterial killing are explained to provide a thorough overview of the current state-of-the-art exploration of antimicrobial pharmacokinetic–pharmacodynamic (PKPD) modeling and simulation. In turn, the information from in vitro and animal studies is connected with clinical outcome for the purpose of determining key information that can improve therapeutic success in the clinic. This chapter also discusses the strategies for optimized dosing regimens and combination therapies that are currently explored to tackle the challenges posed by development of drug-resistant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aires JR, Kohler T, Nikaido H, Plesiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics–pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  CAS  PubMed  Google Scholar 

  • Ambrose PG, Meagher AK, Passarell JA, Van Wart SA, Cirincione BB, Rubino CM, Korth-Bradley JM, Babinchak T, Ellis-Grosse E (2009) Use of a clinically derived exposure–response relationship to evaluate potential tigecycline-Enterobacteriaceae susceptibility breakpoints. Diagn Microbiol Infect Dis 63:38–42

    Article  CAS  PubMed  Google Scholar 

  • Bakker EP (1992) Aminoglycoside and aminocyclitol antibiotics: hygromycin B is an atypical bactericidal compound that exerts effects on cells of Escherichia coli characteristics for bacteriostatic aminocyclitols. J Gen Microbiol 138:563–569

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 41:149–158

    Article  CAS  PubMed  Google Scholar 

  • Breen L, Aswani N (2012) Elective versus symptomatic intravenous antibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev 7:CD002767

    PubMed  Google Scholar 

  • Bulitta JB, Ly NS, Yang JC, Forrest A, Jusko WJ, Tsuji BT (2009) Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:46–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulitta JB, Yang JC, Yohonn L, Ly NS, Brown SV, D’hondt RE, Jusko WJ, Forrest A, Tsuji BT (2010) Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism-based population pharmacodynamic model. Antimicrob Agents Chemother 54:2051–2062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10; quiz 11–12

    Article  CAS  PubMed  Google Scholar 

  • Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, Nicolau DP (2012) Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:6137–6146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dasgupta A (2007). Usefulness of monitoring free (unbound) concentrations of therapeutic drugs in patient management. Clin Chim Acta 377:1–13

    Article  CAS  PubMed  Google Scholar 

  • De Kraker ME, Davey PG, Grundmann H (2011) Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8:e1001104

    Article  PubMed Central  PubMed  Google Scholar 

  • De Kock L, Sy SK, Rosenkranz B, Diacon AH, Prescott K, Hernandez KR, Yu M, Derendorf H, Donald PR (2014) The pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV co-infected tuberculosis patients receiving antiretroviral therapy, managed on multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother (pii: AAC.03073-14; epub ahead of print)

    Article  CAS  PubMed  Google Scholar 

  • Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2:289–300

    Article  CAS  PubMed  Google Scholar 

  • Drusano GL, Preston SL, Hardalo C, Hare R, Banfield C, Andes D, Vesga O, Craig WA (2001) Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45:13–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J (2004) Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 189:1590–1597

    Article  CAS  PubMed  Google Scholar 

  • Drusano GL, Liu W, Fregeau C, Kulawy R, Louie A (2009) Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother 53:2266–2273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drusano GL, Fregeau C, Liu W, Brown DL, Louie A (2010) Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother 54:4368–4372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drusano GL, Liu W, Kulawy R, Louie A (2011a) Impact of granulocytes on the antimicrobial effect of tedizolid in a mouse thigh infection model. Antimicrob Agents Chemother 55:5300–5305

    Google Scholar 

  • Drusano GL, Vanscoy B, Liu W, Fikes S, Brown D, Louie A (2011b) Saturability of granulocyte kill of Pseudomonas aeruginosa in a murine model of pneumonia. Antimicrob Agents Chemother 55:2693–2695

    Google Scholar 

  • Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, Nation RL (2010) Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 54:1117–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eagle H, Fleischman R, Musselman AD (1950a) Effect of schedule of administration on the therapeutic efficacy of penicillin; importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med 9:280–299

    Google Scholar 

  • Eagle H, Fleischman R, Musselman AD (1950b) The effective concentrations of penicillin in vitro and in vivo for streptococci, pneumococci, and Treponema pallidum. J Bacteriol 59:625–643

    Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953a) “Continuous” vs. “discontinuous” therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med 248:481–488

    Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953b) On the duration of penicillin action in relation to its concentration in the serum. J Lab Clin Med 41:122–132

    Google Scholar 

  • Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105:395–424

    Article  CAS  PubMed  Google Scholar 

  • Flume PA, Mogayzel PJ, JR, Robinson KA, Goss CH, Rosenblatt RL, Kuhn RJ, Marshall BC (2009) Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 180:802–808

    Article  PubMed  Google Scholar 

  • Garrett ER (1978) Kinetics of antimicrobial action. Scand J Infect Dis 14(Suppl):54–85

    CAS  Google Scholar 

  • Garrett ER, Nolte H (1972) Kinetics and mechanisms of drug action on microorganisms. XIV. The action of fluorouracil, other uracils and derived nucleosides on the microbial kinetics of Escherichia coli. Chemotherapy 17:81–108

    Article  CAS  PubMed  Google Scholar 

  • Garrett ER, Miller GH, Brown MR (1966) Kinetics and mechanisms of action of antibiotics on microorganisms. V. Chloramphenicol and tetracycline affected Escherichia coli generation rates. J Pharm Sci 55:593–600

    Article  CAS  PubMed  Google Scholar 

  • Gershenfeld NA (1999) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Grasso S, Meinardi G, De Carneri I, Tamassia V (1978) New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 13:570–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    CAS  PubMed  Google Scholar 

  • Hoepelman IM, Rozenberg-Arska M, Verhoef J (1988a) Comparative study of ceftriaxone monotherapy versus a combination regimen of cefuroxime plus gentamicin for treatment of serious bacterial infections: the efficacy, safety and effect on fecal flora. Chemotherapy 34(Suppl 1):21–29

    Google Scholar 

  • Hoepelman IM, Rozenberg-Arska M, Verhoef J (1988b) Comparison of once daily ceftriaxone with gentamicin plus cefuroxime for treatment of serious bacterial infections. Lancet 1:1305–1309

    Google Scholar 

  • Hoffman A, Stepensky D (1999) Pharmacodynamic aspects of modes of drug administration for optimization of drug therapy. Crit Rev Ther Drug Carrier Syst 16:571–639

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Juan C, Moya B, Perez JL, Oliver A (2006) Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 50:1780–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jumbe LNN, Drusano GL (2011) A model-based PK/PD antimicrobial chemotherapy drug development platform to simultaneously combat infectious diseases and drug resistance. In: Kimko HHC, Peck CC (eds) Clinical trial simulations. Springer, New York

    Google Scholar 

  • Jumbe N, Louie A, Leary R, Liu W, Deziel MR, Tam VH, Bachhawat R, Freeman C, Kahn JB, Bush K, Dudley MN, Miller MH, Drusano GL (2003) Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 112:275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jumbe NL, Louie A, Miller MH, Liu W, Deziel MR, Tam VH, Bachhawat R, Drusano GL (2006) Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 50:310–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895

    Article  CAS  PubMed  Google Scholar 

  • Kahlmeter G, Brown DF, Goldstein FW, Macgowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A (2003) European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52:145–148

    Article  CAS  PubMed  Google Scholar 

  • Kahlmeter G, Brown DF, Goldstein FW, Macgowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O (2006) European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical notes on antimicrobial susceptibility testing. Clin Microbiol Infect 12:501–503

    Article  CAS  PubMed  Google Scholar 

  • Kullar R, Leonard SN, Davis SL, Delgado G JR, Pogue JM, Wahby KA, Falcione B, Rybak MJ (2011) Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy 31:441–448

    Article  CAS  PubMed  Google Scholar 

  • Langaee TY, Dargis M, Huletsky A (1998) An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression. Antimicrob Agents Chemother 42:3296–3300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langaee TY, Gagnon L, Huletsky A (2000) Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Antimicrob Agents Chemother 44:583–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Peris J, Zhong L, Derendorf H (2006) Microdialysis as a tool in local pharmacodynamics. AAPS J 8:E222–E235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo A, Beh J, De Leon H, Hallow MK, Ramakrishna R, Rodrigo M, Sarkar A, Sarangapani R, Georgieva A (2011) Using a systems biology approach to explore hypotheses underlying clinical diversity of the renin angiotensin system and the response to antihypertensive therapies. In: Kimko HHC, Peck CC (eds) Clinical trial simulations. Springer, New York

    Google Scholar 

  • Louie A, Brown DL, Liu W, Kulawy RW, Deziel MR, Drusano GL (2007) In vitro infection model characterizing the effect of efflux pump inhibition on prevention of resistance to levofloxacin and ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 51:3988–4000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louie A, Liu W, Fikes S, Brown D, Drusano GL (2013) Impact of meropenem in combination with tobramycin in a murine model of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother 57:2788–2792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000a) Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246

    Google Scholar 

  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000b) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327

    Google Scholar 

  • Meagher AK, Passarell JA, Cirincione BB, Van Wart SA, Liolios K, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2007) Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51:1939–1945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mielck JB, Garrett ER (1969) Kinetics and mechanisms of drug action on microorganisms. IX. Inhibitory action of lincomycin on Escherichia coli by microbial kinetics. Chemotherapy 14:337–355

    Article  CAS  PubMed  Google Scholar 

  • Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed AF, Nielsen EI, Cars O, Friberg LE (2012) Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother 56:179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004a) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43:925–942

    Google Scholar 

  • Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering RC JR (2004b) Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis 38:1700–1705

    Google Scholar 

  • Mondorf AW, Bonsiepe C, Mondorf W (1989) Randomized multi center study comparing nephrotoxicity of ceftazidime versus the combination of piperacillin and netilmicin with and without furosemide. Adv Exp Med Biol 252:307–312

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (2005) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44:201–210

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA, Punt NC (1997) Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob Agents Chemother 41:733–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouton JW, Punt N, Vinks AA (2005) A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. Clin Ther 27:762–772

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Punt N, Vinks AA (2007) Concentration–effect relationship of ceftazidime explains why the time above the MIC is 40 % for a static effect in vivo. Antimicrob Agents Chemother 51:3449–3451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O (2008) Tissue concentrations: do we ever learn? J Antimicrob Chemother 61:235–237

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, Macgowan A, Theuretzbacher U, Turnidge J (2011) Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updates 14:107–117

    Article  CAS  Google Scholar 

  • Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M, Macgowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G (2012) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18:E37–E45

    Article  CAS  PubMed  Google Scholar 

  • Mueller M, De La Pena A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother 48:369–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65:1053–1090

    Article  PubMed  Google Scholar 

  • Nielsen EI, Viberg A, Lowdin E, Cars O, Karlsson MO, Sandstrom M (2007) Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob Agents Chemother 51:128–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen EI, Cars O, Friberg LE (2011) Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother 55:4619–4630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolting A, Dalla Costa T, Rand KH, Derendorf H (1996) Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro. Pharm Res 13:91–96

    Article  CAS  PubMed  Google Scholar 

  • Passarell JA, Meagher AK, Liolios K, Cirincione BB, Van Wart SA, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2008) Exposure-response analyses of tigecycline efficacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 52:204–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. Br Med J 328:668

    Article  CAS  Google Scholar 

  • Piccart M, Klastersky J, Meunier F, Lagast H, Van Laethem Y, Weerts D (1984) Single-drug versus combination empirical therapy for gram-negative bacillary infections in febrile cancer patients with and without granulocytopenia. Antimicrob Agents Chemother 26:870–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J, Li XZ, Nishino T (1996) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724

    Article  CAS  PubMed  Google Scholar 

  • Quale J, Bratu S, Gupta J, Landman D (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50:1633–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP (2009a) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98

    Google Scholar 

  • Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, Dalovisio JR, Levine DP (2009b) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49:325–327

    Google Scholar 

  • Safdar N, Handelsman J, Maki DG (2004) Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 4:519–527

    Article  PubMed  Google Scholar 

  • Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanfilippo A, Morvillo E (1968). An experimental model for the study of the antibacterial activity of the sulfonamides. Chemotherapy 13:54–60

    Article  CAS  PubMed  Google Scholar 

  • Sanfilippo A, Schioppacassi G (1973) New approach to the evaluation of antibacterial activity of aminosidine. Chemotherapy 18:297–303

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Barbour A, Sahre M, Rand KH, Derendorf H (2008) PK/PD: new insights for antibacterial and antiviral applications. Curr Opin Pharmacol 8:549–556

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Sabarinath SN, Barbour A, Abbanat D, Manitpisitkul P, Sha S, Derendorf H (2009) Pharmacokinetic-pharmacodynamic modeling of the in vitro activities of oxazolidinone antimicrobial agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:5039–5045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shakil S, Khan R, Zarrilli R, Khan AU (2008) Aminoglycosides versus bacteria—a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15:5–14

    Article  CAS  PubMed  Google Scholar 

  • Sideraki V, Huang W, Palzkill T, Gilbert HF (2001) A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A 98:283–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sobel ML, Mckay GA, Poole K (2003) Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spino M (1991). Pharmacokinetics of drugs in cystic fibrosis. Clin Rev Allergy 9:169–210

    CAS  PubMed  Google Scholar 

  • Sy SK, Beaudoin ME, Schuck VJ, Derendorf H (2013) Modeling the potentiation of in vitro aztreonam activities by avibactam against four beta-lactam-resistant bacterial strains. Interscience Conference on Antimicrobial Agents and Chemotherapy, Poster A–1014

    Google Scholar 

  • Tam VH, Louie A, Deziel MR, Liu W, Leary R, Drusano GL (2005) Bacterial-population responses to drug-selective pressure: examination of garenoxacin’s effect on Pseudomonas aeruginosa. J Infect Dis 192:420–428

    Article  PubMed  Google Scholar 

  • Tam VH, Louie A, Deziel MR, Liu W, Drusano GL (2007a) The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 51:744–747

    Google Scholar 

  • Tam VH, Louie A, Fritsche TR, Deziel M, Liu W, Brown DL, Deshpande L, Leary R, Jones RN, Drusano GL (2007b) Impact of drug-exposure intensity and duration of therapy on the emergence of Staphylococcus aureus resistance to a quinolone antimicrobial. J Infect Dis 195:1818–1827

    Google Scholar 

  • Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M (2008) Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 52:3987–3993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treyaprasert W, Schmidt S, Rand KH, Suvanakoot U, Derendorf H (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29:263–270

    Article  CAS  PubMed  Google Scholar 

  • Tsuji BT, Brown T, Parasrampuria R, Brazeau DA, Forrest A, Kelchlin PA, Holden PN, Peloquin CA, Hanna D, Bulitta JB (2012a) Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus. Antimicrob Agents Chemother 56:3712–3719

    Google Scholar 

  • Tsuji BT, Bulitta JB, Brown T, Forrest A, Kelchlin PA, Holden PN, Peloquin CA, Skerlos L, Hanna D (2012b) Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. J Antimicrob Chemother 67:2182–2190

    Google Scholar 

  • Vinks AA, Van Rossem RN, Mathot RA, Heijerman HG, Mouton JW (2007). Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using monte carlo simulation. Antimicrob Agents Chemother 51:3049–3055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walkty A, Decorby M, Lagace-Wiens PR, Karlowsky JA, Hoban DJ, Zhanel GG (2011) In vitro activity of ceftazidime combined with NXL104 versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals (CANWARD 2009 study). Antimicrob Agents Chemother 55:2992–2994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Hindler JF, Ward KW, Bruckner DA (2006) Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 44:3883–3886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yano Y, Oguma T, Nagata H, Sasaki S (1998) Application of logistic growth model to pharmacodynamic analysis of in vitro bactericidal kinetics. J Pharm Sci 87:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Sy SK, Xia H, Singh RP, Liu C, Derendorf H (2013) Characterization of the in vitro antimicrobial activity of vertilmicin alone and in combination with ceftazidime by using a semi-mechanistic pharmacokinetic/pharmacodynamic model. Interscience Conference on Antimicrobial Agents and Chemotherapy, Poster A-017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Sy, S., Derendorf, H. (2014). Pharmacometrics in Bacterial Infections. In: Schmidt, S., Derendorf, H. (eds) Applied Pharmacometrics. AAPS Advances in the Pharmaceutical Sciences Series, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1304-6_8

Download citation

Publish with us

Policies and ethics