Skip to main content

Constraining the Flux Space Using Thermodynamics and Integration of Metabolomics Data

  • Protocol
  • First Online:
Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1191))

Abstract

Flux balance analysis of stoichiometric metabolic models has become one of the most common methods for estimating intracellular fluxes. However most of these networks are underdetermined and can have multiple alternate optimal flux distributions. Thermodynamic constraints can reduce the solution space significantly and at the same time provide a platform for the integration of metabolomics data. Here we go through the procedure to incorporate thermodynamic constraints and perform thermodynamic analysis of metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416

    Article  CAS  PubMed  Google Scholar 

  2. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol 7:535

    Article  PubMed Central  PubMed  Google Scholar 

  3. Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database bat059

    Google Scholar 

  4. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering. p. 264–276

    Google Scholar 

  6. Price N, Reed J, Palsson B (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  CAS  PubMed  Google Scholar 

  7. Soh KC, Miskovic L, Hatzimanikatis V, Nielsen J (2011) From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 12(2):129–143

    Article  PubMed  Google Scholar 

  8. Soh KC, Hatzimanikatis V (2010) Network thermodynamics in the post-genomic era. Curr Opin Microbiol 13(3):350–357

    Article  CAS  PubMed  Google Scholar 

  9. Henry C, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Goldberg RN, Tewari YB, Bhat TN (2004) Thermodynamics of enzyme-catalyzed reactions–a database for quantitative biochemistry. Bioinformatics 20(16):2874–2877

    Article  CAS  PubMed  Google Scholar 

  12. Wang PM, Neumann DB (1989) A database and retrieval-system for the Nbs tables of chemical thermodynamic properties. J Chem Inf Comput Sci 29(1):31–38

    Article  CAS  Google Scholar 

  13. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36(10):1070–1082

    Article  CAS  PubMed  Google Scholar 

  15. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266(22):14440–14445

    CAS  PubMed  Google Scholar 

  16. Noor E, Bar-Even A, Flamholz A, Lubling Y, Davidi D, Milo R (2012) An integrated open framework for thermodynamics of reactions that combines accuracy and coverage. Bioinformatics 28(15):2037–2044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jorgensen WL (1989) Free-energy calculations—a breakthrough for modeling organic-chemistry in solution. Acc Chem Res 22(5):184–189

    Article  CAS  Google Scholar 

  18. Hu H, Yang WT (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) Estimation of absolute free energies of hydration using continuum methods: accuracy of partial, charge models and optimization of nonpolar contributions. J Chem Theory Comput 2(1):128–139

    Article  CAS  Google Scholar 

  20. Feist A, Henry C, Reed J, Krummenacker M, Joyce A, Karp P, Broadbelt L, Hatzimanikatis V, Palsson B (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jol SJ, Kummel A, Hatzimanikatis V, Beard DA, Heinemann M (2010) Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks. Biophys J 99(10):3139–3144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alberty RA (2003) Thermodynamics of biochemical reactions. Wiley-Interscience, Hoboken, NJ, p ix, 397

    Google Scholar 

  23. Szegezdi F, Csizmadia, A (2007) A Method for Calculating the pK Values of Small and Large Molecules. 233rd ACS national meeting, CINF41 2007, Chicago, USA

    Google Scholar 

  24. ACD/pKa DB. A.C.D. Inc., Toronto, ON, Canada

    Google Scholar 

  25. Slonczewski JL, Rosen BP, Alger JR, Macnab RM (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A 78(10):6271–6275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kaim G, Dimroth P (1998) ATP synthesis by the F1Fo ATP synthase of Escherichia coli is obligatorily dependent on the electric potential. FEBS Lett 434(1–2):57–60

    Article  CAS  PubMed  Google Scholar 

  27. Toya Y, Nakahigashi K, Tomita M, Shimizu K (2012) Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol BioSyst 8(10):2593–2604

    Article  CAS  PubMed  Google Scholar 

  28. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12(5):553–558

    Article  CAS  PubMed  Google Scholar 

  29. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed Central  PubMed  Google Scholar 

  30. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232(2):433–448

    Article  CAS  PubMed  Google Scholar 

  31. Henry C, Jankowski MD, Broadbelt LJ, Hatzimanikatis V (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90(4):1453–1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schellenberger J, Palsson BO (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    Article  CAS  PubMed  Google Scholar 

  33. Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46(1):84–95

    Article  Google Scholar 

  34. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York, NY

    Book  Google Scholar 

  35. Miskovic L, Hatzimanikatis V (2011) Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng 108(2):413–423

    Article  CAS  PubMed  Google Scholar 

  36. Miskovic L, Hatzimanikatis V (2010) Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol 28(8):391–397

    Article  CAS  PubMed  Google Scholar 

  37. Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and Validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309

    Google Scholar 

  38. Kwon YD, Lee SY, Kim P (2006) Influence of gluconeogenic phosphoenol pyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J Microbiol Biotechnol 16:1448–1452

    Google Scholar 

  39. Singh A, Soh KC, Hatzimanikatis V, Gill RT (2011) Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng 13:76–81

    Google Scholar 

Download references

Acknowledgement

K.C.S. was supported by the Swiss National Science Foundation. V.H. is supported by funding from Ecole Polytechnique Fédérale de Lausanne (EPFL) and NEMO for Bioethanol, EU FP7 Programme. Support has also been provided from SystemsX.ch, The Swiss Initiative in Systems Biology, through the project MetaNetX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassily Hatzimanikatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Soh, K.C., Hatzimanikatis, V. (2014). Constraining the Flux Space Using Thermodynamics and Integration of Metabolomics Data. In: Krömer, J., Nielsen, L., Blank, L. (eds) Metabolic Flux Analysis. Methods in Molecular Biology, vol 1191. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1170-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1170-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1169-1

  • Online ISBN: 978-1-4939-1170-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics