Skip to main content

Using Microfluidics to Investigate Hematopoietic Stem Cell and Microniche Interactions at the Single Cell Level

  • Protocol
  • First Online:
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

Abstract

In recent years, microfluidic devices have become widely used in biology, and with the advantage of requiring low sample volumes, enables previously technologically infeasible experiments in hematopoietic stem cell (HSC) research. Here, we introduce a microfluidic device to investigate dynamic interactions between HSC and model niches in vitro. The device comprises a pneumatic valve which enables the culturing of different types of niche cells in different parts of the same device. Single HSCs can then be injected into the microfluidic device, manipulated, and placed onto different niches within the same device as controlled by the user. Here, we describe the device fabrication method, the HSC collection methodology, and the operational procedure for the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Tech 42:49–62

    CAS  Google Scholar 

  2. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  3. Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  CAS  PubMed  Google Scholar 

  4. Unger MA, Chou HP, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  CAS  PubMed  Google Scholar 

  5. Young EW, Berthier E, Guckenberger DJ et al (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  PubMed  Google Scholar 

  7. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  8. Wu HW, Hsu RC, Lin CC, Hwang SM, Lee GB (2010) An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics 4(2), pii:024112

    Google Scholar 

  9. Schirhagl R, Fuereder I, Hall EW et al (2011) Microfluidic purification and analysis of hematopoietic stem cells from bone marrow. Lab Chip 11:3130–3135

    Article  CAS  PubMed  Google Scholar 

  10. Lecault V, Vaninsberghe M, Sekulovic S et al (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8:581–586

    Article  CAS  PubMed  Google Scholar 

  11. Dykstra B, Ramunas J, Kent D et al (2006) High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc Natl Acad Sci U S A 103:8185–8190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kobel SA, Burri O, Griffa A et al (2012) Automated analysis of single stem cells in microfluidic traps. Lab Chip 12:2843–2849

    Article  CAS  PubMed  Google Scholar 

  13. Faley SL, Copland M, Wlodkowic D et al (2009) Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9:2659–2664

    Article  CAS  PubMed  Google Scholar 

  14. Glotzbach JP, Januszyk M, Vial IN et al (2011) An information theoretic, microfluidic-based single cell analysis permits identification of subpopulations among putatively homogeneous stem cells. Plos One 6:e21211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbur A. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ahn, B., Wang, Z., Archer, D.R., Lam, W.A. (2014). Using Microfluidics to Investigate Hematopoietic Stem Cell and Microniche Interactions at the Single Cell Level. In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics