Skip to main content

A Practical Approach to Clinical and Research Biobanking

  • Protocol
  • First Online:
Histopathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1180))

Abstract

Powerful technologies critical to personalized medicine and targeted therapeutics require the analysis of carefully validated, procured, stored, and managed biospecimens. Reflecting advancements in biospecimen science, the National Cancer Institute and the International Society for Biological and Environmental Repositories are periodically publishing best practices that can guide the biobanker. The modern biobank will operate more like a clinical laboratory with formal accreditation, standard operating procedures, and quality assurance protocols. This chapter highlights practical issues of consent, procurement, storage, quality assurance, disbursement, funding, and space. Common topics of concern are discussed including the differences between clinical and research biospecimens, stabilization of biospecimens during procurement, optimal storage temperatures, and technical validation of biospecimen content and quality. With quickly expanding biospecimen needs and limited healthcare budgets, biobanks may need to be selective as to what is stored. Furthermore, a shift to room-temperature storage modalities where possible can reduce long-term space and fiscal requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Bureau of the Census. http://www.census.gov/newsroom/releases/archives/population/cb12-243.html. Accessed 26 Nov 2013

  2. World population prospects, The 2012 Revision by the United Nations Department of Economic and Social Affairs, Population Division. http://esa.un.org/wpp/Documentation/publications.htm. Accessed 26 Nov 2013

  3. Vaught J, Rogers J, Carolin T et al (2011) Biobankonomics: developing a sustainable business model approach for the formation of a human tissue biobank. J Natl Cancer Inst Monogr 42:24–31

    Article  Google Scholar 

  4. National Biospecimen Network Blueprint (2003) http://biospecimens.cancer.gov/about/timeline.asp. Accessed 26 Nov 2013

  5. http://www.biospecimens.cancer.gov. Accessed 26 Nov 2013

  6. http://biospecimens.cancer.gov/researchnetwork/default.asp. Accessed 26 Nov 2013

  7. Silberman S (2010) Libraries of Flesh: The Sorry State of Human Tissue Storage, Wired Magazine. http://www.wired.com/magazine/2010/05/ff_biobanks/. Accessed 26 Nov 2013

  8. Check E (2007) Cancer atlas maps out sample worries. Nature 447:1036–1037

    Article  CAS  PubMed  Google Scholar 

  9. Blow N (2009) Biobanking: freezer burn. Nat Methods 6:173–177

    Article  CAS  Google Scholar 

  10. http://www.isber.org/?page=SAT. Accessed 26 Nov 2013

  11. http://www.isber.org/?page=PTGI. Accessed 26 Nov 2013

  12. http://www.cap.org/apps/cap.portal. Accessed 26 Nov 2013

  13. CAP Biorepository Master Checklist (2012) http://www.cap.org/apps/docs/laboratory_accreditation/checklists/new/biorepository_checklist.pdfAccessed05/29/2014

  14. Epstein JI (2001) Pathologists and the judicial process: how to avoid it. Am J Surg Pathol 25:527–537

    Article  CAS  PubMed  Google Scholar 

  15. Drut R (2002) Who is the owner of the slides, blocks, and fixed tissues? Am J Surg Pathol 26:274

    Article  PubMed  Google Scholar 

  16. Hakimian R, Korn D (2004) Ownership and use of tissue specimens for research. JAMA 292:2500–2505

    Article  CAS  PubMed  Google Scholar 

  17. Hakimian R, Taube S, Bledsoe M et al (2004) National Cancer Institute Cancer Diagnosis Program: 50-State Survey of Laws Regarding the Collection, Storage, and Use of Human Tissue Specimens and Associated Data for Research. Bethesda, MD: National Institutes of Health; NIH publication No: 05-5628

    Google Scholar 

  18. Harty-Golder B (2004) Retention and ownership of blocks. MLO Med Lab Obs 36:37

    PubMed  Google Scholar 

  19. Dry S (2009) Who owns diagnostic tissue blocks? Lab Med 40:69–73

    Article  Google Scholar 

  20. Dry S, Grody WW, Papagni P (2012) Stuck between a scalpel and a rock, or molecular pathology and legal-ethical issues in use of tissues for clinical care and research: what must a pathologist know? Am J Clin Pathol 137:346–355

    Article  PubMed  Google Scholar 

  21. Washington University v Catalona (2007) 400F.3d 667, 8th Cir

    Google Scholar 

  22. Washington University v Catalona (2006) 437F. Supp 2d 985, E.D. Mo

    Google Scholar 

  23. Charo RA (2006) Body of research: ownership and use of human tissue. N Engl J Med 355:1517–1519

    Article  CAS  PubMed  Google Scholar 

  24. Andrews L (2006) Who owns your body? A patient’s perspective on Washington University v Catalona. J Law Med Ethics 34:398–407

    Article  PubMed  Google Scholar 

  25. Annas GJ (1990) Outrageous fortune: selling other people's cells. Hastings Cent Rep 20:36–39

    Article  CAS  PubMed  Google Scholar 

  26. Skloot R (2006) Taking the least of you. New York Times Magazine, 16 April

    Google Scholar 

  27. Kaiser J (2006) Court decides tissue samples belong to university, not patients. Science 312:346

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt C (2006) Tissue banks trigger worry about ownership issues. J Natl Cancer Inst 98:1174–1175

    Article  PubMed  Google Scholar 

  29. Moore v Regents of the University of California (1990) 793 P. 2d 479, Cal Rptr 146

    Google Scholar 

  30. Greenberg v Miami Children's Hospital Research Institute (2003) 264F. Supp. 2d 1064, S.D. Fla

    Google Scholar 

  31. Marshall E (2000) Families sue hospital, scientist for control of Canavan gene. Science 290:1062–1063.2

    Article  CAS  PubMed  Google Scholar 

  32. Section 1862 of the Social Security Act (42 USC 1395y(a))

    Google Scholar 

  33. Public Health: Exclusions From Medicare and Limitations on Medicare Payment, 42 CFR 411.15(k)

    Google Scholar 

  34. Human Subjects Research Protections: Enhancing Protections for Research Subjects and Reducing Burden, Delay, and Ambiguity for Investigators (2011) Federal Register on July 26, 2011 (76 FR 44512) HHS-OPHS-2011-005

    Google Scholar 

  35. Bahn S, Augood SJ, Ryan M et al (2001) Gene expression profiling in the post-mortem human brain-no cause for dismay. J Chem Neuroanat 22:79–94

    Article  CAS  PubMed  Google Scholar 

  36. Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Espina V, Mueller C, Edmiston K et al (2009) Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 3:874–882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  39. Bao WG, Zhang X, Zhang JG et al (2013) Biobanking of fresh-frozen human colon tissues: impact of tissue ex-vivo ischemia times and storage periods on RNA quality. Ann Surg Oncol 20:1737–1744

    Article  PubMed  Google Scholar 

  40. De Cecco L, Musella V, Veneroni S et al (2009) Impact of biospecimens handling on biomarker research in breast cancer. BMC Cancer 9:409

    Article  PubMed Central  PubMed  Google Scholar 

  41. Micke P, Ohshima M, Tahmasebpoor S et al (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86:202–211

    Article  CAS  PubMed  Google Scholar 

  42. Van Maldegem F, de Wit M, Morsink F et al (2008) Effects of processing delay, formalin fixation, and immunohistochemistry on RNA recovery from formalin-fixed paraffin-embedded tissue sections. Diagn Mol Pathol 17:51–58

    PubMed  Google Scholar 

  43. Barnes RO, Parisien M, Murphy LC et al (2008) Influence of evolution in tumor biobanking on the interpretation of translational research. Cancer Epidemiol Biomarkers Prev 17:3344–3350

    Article  CAS  PubMed  Google Scholar 

  44. Hong SH, Baek HA, Jang KY et al (2010) Effects of delay in the snap freezing of colorectal cancer tissues on the quality of DNA and RNA. J Korean Soc Coloproctol 26:316–323

    Article  PubMed Central  PubMed  Google Scholar 

  45. Bray SE, Paulin FE, Fong SC et al (2010) Gene expression in colorectal neoplasia: modifications induced by tissue ischaemic time and tissue handling protocol. Histopathology 56:240–250

    Article  PubMed  Google Scholar 

  46. Sampaio-Silva F, Magalhães T, Carvalho F et al (2013) Profiling of RNA degradation for estimation of post mortem interval. PLoS One 8:e56507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Musella V, Verderio P, Reid JF et al (2013) Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa. PLoS One 8:e53406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dumur CI, Sana S, Ladd AC et al (2008) Assessing the impact of tissue devitalization time on genome-wide gene expression analysis in ovarian tumor samples. Diagn Mol Pathol 17:200–206

    Article  CAS  PubMed  Google Scholar 

  49. Ma Y, Dai H, Kong X (2012) Impact of warm ischemia on gene expression analysis in surgically removed biosamples. Anal Biochem 423:229–235

    Article  CAS  PubMed  Google Scholar 

  50. Walker LA, Medway AM, Walker JS et al (2011) Tissue procurement strategies affect the protein biochemistry of human heart samples. J Muscle Res Cell Motil 31:309–314

    Article  CAS  PubMed  Google Scholar 

  51. Azimi-Nezhad M, Lambert D, Ottone C et al (2012) Influence of pre-analytical variables on VEGF gene expression and circulating protein concentrations. Biopreserv Biobanking 10:454–461

    Article  CAS  Google Scholar 

  52. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134:e48–72

    CAS  PubMed  Google Scholar 

  53. Holland NT, Smith MT, Eskenazi B et al (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234

    Article  CAS  PubMed  Google Scholar 

  54. Gillio-Meina C, Cepinskas G, Cecchini EL et al (2013) Translational research in pediatrics II: blood collection, processing, shipping, and storage. Pediatrics 131:754–766

    Article  PubMed  Google Scholar 

  55. Elliott P, Peakman TC (2008) The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol 37:234–244

    Article  PubMed  Google Scholar 

  56. Landi MT, Caporaso N (1997) Sample collection, processing and storage. IARC Sci Publ 142:223–236

    PubMed  Google Scholar 

  57. Boyanton BL, Blick KE (2002) Stability studies of twenty-four analytes in human plasma and serum. Clin Chem 48:2242–2247

    CAS  PubMed  Google Scholar 

  58. Hsieh SY, Chen RK, Pan YH et al (2006) Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 6:3189–3198

    Article  CAS  PubMed  Google Scholar 

  59. Tsui NB, Ng EK, Lo YM (2002) Stability of endogenous and added RNA in blood specimens, serum and plasma. Clin Chem 48:1647–1653

    CAS  PubMed  Google Scholar 

  60. Halsall A, Ravetto P, Reyes Y et al (2008) The quality of DNA extracted from liquid or dried blood is not adversely affected by storage at 4 degrees C for up to 24 h. Int J Epidemiol 37:i7–i10

    Article  PubMed  Google Scholar 

  61. Qualman SJ, France M, Grizzle WE et al (2004) Establishing a tumour bank: banking, informatics and ethics. Br J Cancer 90:1115–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Crawford D, Cowan S, Hyder S et al (1984) New storage procedure for human tumor biopsies prior to estrogen receptor measurement. Cancer Res 44:2348–2351

    CAS  PubMed  Google Scholar 

  63. Leonard S, Logel J, Luthman D et al (1993) Biological stability of mRNA isolated from human postmortem brain collections. Biol Psychiatry 33:456–466

    Article  CAS  PubMed  Google Scholar 

  64. Chu TY, Hwang KS, Yu MH et al (2002) A research-based tumor tissue bank of gynecologic oncology: characteristics of nucleic acids extracted from normal and tumor tissues from different sites. Int J Gynecol Cancer 12:171–176

    Article  PubMed  Google Scholar 

  65. Ericsson C, Franzén B, Nistér M et al (2006) Frozen tissue biobanks: tissue handling, cryopreservation, extraction, and use for proteomic analysis. Acta Oncol 45:643–461

    Article  CAS  PubMed  Google Scholar 

  66. Mackey EA, Demiralp R, Fitzpatrick KA et al (1999) Quality assurance in analysis of cryogenically stored liver tissue specimens from the NIST National Biomonitoring Specimen Bank (NBSB). Sci Total Environ 226:165–176

    Article  CAS  PubMed  Google Scholar 

  67. Nederhand RJ, Droog S, Kluft C et al (2003) Logistics and quality control for DNA sampling in large multicenter studies. J Thromb Haemost 1:987–991

    Article  CAS  PubMed  Google Scholar 

  68. Lewis MR, Callas PW, Jenny NS et al (2001) Longitudinal stability of coagulation, fibrinolysis, and inflammation factors in stored plasma samples. Thromb Haemost 86:1495–1500

    CAS  PubMed  Google Scholar 

  69. Jochumsen KM, Tan Q, Dahlgaard J et al (2007) RNA quality and gene expression analysis of ovarian tumor tissue undergoing repeated thaw-freezing. Exp Mol Pathol 82:95–102

    Article  CAS  PubMed  Google Scholar 

  70. Botling J, Edlund K, Segersten U et al (2009) Impact of thawing on RNA integrity and gene expression analysis in fresh frozen tissue. Diagn Mol Pathol 18:44–52

    Article  CAS  PubMed  Google Scholar 

  71. Sherwood KR, Head MW, Walker R et al (2011) RNA integrity in post mortem human variant Creutzfeldt-Jakob disease (vCJD) and control brain tissue. Neuropathol Appl Neurobiol 37:633–642

    Article  CAS  PubMed  Google Scholar 

  72. Ross KS, Haites NE, Kelly KF (1990) Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity. J Med Genet 27:569–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kopreski MS, Benko FA, Kwak LW et al (1999) Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 5:1961–1965

    CAS  PubMed  Google Scholar 

  74. Baumann S, Ceglarek U, Fiedler GM et al (2005) Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 51:973–980

    Article  CAS  PubMed  Google Scholar 

  75. Arzt L, Kothmaier H, Quehenberger F et al (2011) Evaluation of formalin-free tissue fixation for RNA and microRNA studies. Exp Mol Pathol 91:490–495

    Article  CAS  PubMed  Google Scholar 

  76. Buesa RJ (2008) Histology without formalin? Ann Diagn Pathol 12:387–396

    Article  PubMed  Google Scholar 

  77. Moelans CB, Oostenrijk D, Moons MJ et al (2011) Formaldehyde substitute fixatives: effects on nucleic acid preservation. J Clin Pathol 64:960–967

    Article  CAS  PubMed  Google Scholar 

  78. Dotti I, Bonin S, Basili G et al (2010) Effects of formalin, methacarn, and fineFIX fixatives on RNA preservation. Diagn Mol Pathol 19:112–122

    Article  CAS  PubMed  Google Scholar 

  79. Tsiatis AC, Norris-Kirby A, Rich RG et al (2010) Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 12:425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. McLendon R, Friedman A, Bigner D et al (2008) Cancer genome atlas research network, comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  81. Li M, Stoneking M (2012) A new approach for detecting low-level mutations in next-generation sequence data. Genome Biol 13:R34

    Article  PubMed Central  PubMed  Google Scholar 

  82. Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York, NY, Section 4.1

    Google Scholar 

  83. Glasel JA (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 18:62–63

    CAS  PubMed  Google Scholar 

  84. Manchester KL (1996) Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques 20:968–970

    CAS  PubMed  Google Scholar 

  85. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22:478–481

    Google Scholar 

  86. Jewell SD, Srinivasan M, McCart LM et al (2002) Analysis of the molecular quality of human tissues: an experience from the cooperative human tissue network. Am J Clin Pathol 118:733–741

    Article  CAS  PubMed  Google Scholar 

  87. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  PubMed  Google Scholar 

  88. Raman T, O'Connor TP, Hackett NR et al (2009) Quality control in microarray assessment of gene expression in human airway epithelium. BMC Genomics 10:493

    Article  PubMed Central  PubMed  Google Scholar 

  89. Eikmans M, Rekers NV, Anholts JD et al (2013) Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation. Blood 121:e81–89

    Article  CAS  PubMed  Google Scholar 

  90. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  91. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  92. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  93. Mareninov S, De Jesus J, Sanchez DE et al (2013) Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. J Neurooncol 113:365–373

    Article  CAS  PubMed  Google Scholar 

  94. Geddes TJ, Ahmed S, Pruetz BL et al (2013) SPIN: development of sample-specific protein integrity numbers as an index of biospecimen quality. Biopreserv Biobanking 11:25–32

    Article  CAS  Google Scholar 

  95. Leboeuf C, Ratajczak P, Zhao WL et al (2008) Long-term preservation at room temperature of freeze-dried human tumor samples dedicated to nucleic acids analyses. Cell Preserv Technol 6:191–198

    Article  CAS  Google Scholar 

  96. Florell SR, Coffin CM, Holden JA et al (2001) Preservation of RNA for functional genomic studies: a multidisciplinary tumor bank protocol. Mod Pathol 14:116–128

    Article  CAS  PubMed  Google Scholar 

  97. Weintraub K (2012) “Freezer failure cited in loss of McLean tissue samples” The Boston Globe. December 3. http://www.bostonglobe.com/metro/massachusetts/2012/12/03/independent-analysis-faults-freezer-control-for-defrosted-brain-samples/YiFK5P3cEifUq0UgPSyo6H/story.html Accessed 26 Nov 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William H. Yong M.D. or Sarah M. Dry M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Yong, W.H., Dry, S.M., Shabihkhani, M. (2014). A Practical Approach to Clinical and Research Biobanking. In: Day, C. (eds) Histopathology. Methods in Molecular Biology, vol 1180. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1050-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1050-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1049-6

  • Online ISBN: 978-1-4939-1050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics