Skip to main content

Chemical Genomics: Characterizing Target Pathways for Bioactive Compounds Using the Endomembrane Trafficking Network

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

The plant endomembrane trafficking system is a highly complex set of processes. This complexity presents a challenge for its study. Classical plant genetics often struggles with loss-of-function lethality and gene redundancy. Chemical genomics allows overcoming many of these issues by using small molecules of natural or synthetic origin to inhibit specific trafficking proteins thereby affecting the processes in a tunable and reversible manner. Bioactive chemicals identified by high-throughput phenotype screens must be characterized in detail starting with understanding of the specific trafficking pathways affected. Here, we describe approaches to characterize bioactive compounds that perturb vesicle trafficking. This should equip researchers with practical knowledge on how to identify endomembrane-specific trafficking pathways that may be perturbed by specific compounds and will help to eventually identify molecular targets for these small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zouhar J, Rojo E, Bassham DC (2010) Retrograde transport from the prevacuolar compartment to the trans-Golgi network. Plant Sci 178:90–93

    Article  CAS  Google Scholar 

  2. Viotti C, Bubeck J, Stierhof Y-D et al (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Contento AL, Bassham DC (2012) Structure and function of endosomes in plant cells. J Cell Sci 125:3511–3518

    Article  CAS  PubMed  Google Scholar 

  4. Hicks GR, Raikhel NV (2012) Small molecules present large opportunities in plant biology. Annu Rev Plant Biol 63:261–282

    Article  CAS  PubMed  Google Scholar 

  5. Blackwell HE, Zhao Y (2003) Chemical genetic approaches to plant biology. Plant Physiol 133:448–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Robert S, Raikhel NV, Hicks GR (2009) Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7:21

    Article  Google Scholar 

  7. Surpin M, Rojas-Pierce M, Carter C et al (2005) The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci U S A 102:4902–4907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Drakakaki G, Robert S, Szatmari A-M et al (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A 108:17850–17855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pérez-Henríquez P, Raikhel NV, Norambuena L (2012) Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana. Mol Plant 5: 1195–1209

    Google Scholar 

  10. Ung N, Brown MQ, Hicks GR et al (2013) An approach to quantify endomembrane dynamics in pollen utilizing bioactive chemicals. Mol Plant 6:1202–1213

    Article  CAS  PubMed  Google Scholar 

  11. Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR et al (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 7:e44735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Swarup R, Kargul J, Marchant A et al (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Urbina D, Pérez-Henríquez P, Norambuena L (2012) The use of multidrug approach to uncover new players of the endomembrane system trafficking machinery. In: Hicks GR, Stéphanie R (eds) Plant chemical genomics, vol 1056, Methods in molecular biology. Humana Press, New York

    Google Scholar 

  14. Takano J, Tanaka M, Toyoda A et al (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Robert S, Bichet A, Grandjean O et al (2005) An Arabidopsis endo-1,4-beta-d-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17:3378–3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Robinson DG, Jiang L, Schumacher K (2008) The endosomal system of plants: charting new and familiar territories. Plant Physiol 147:1482–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang J, Cai Y, Miao Y et al (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60:3075–3083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wang YS, Motes CM, Mohamalawari DR et al (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskeleton 59:79–93

    Article  CAS  PubMed  Google Scholar 

  20. Sanderfoot AA, Kovaleva V, Bassham DC et al (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12:3733–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Robert S, Chary SN, Drakakaki G et al (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A 105:8464–8469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nebenfuhr A, Gallagher LA, Dunahay TG et al (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Grebe M, Xu J, Mobius W et al (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  CAS  PubMed  Google Scholar 

  24. Geldner N, Denervaud-Tendon V, Hyman DL et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  CAS  PubMed  Google Scholar 

  25. Fu Y, Xu T, Zhu L et al (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Geldner N, Hyman DL, Wang X et al (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cutler SR, Ehrhardt DW, Griffitts JS et al (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ovečka M, Berson T, Beck M et al (2010) Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22:2999–3019

    Article  PubMed Central  PubMed  Google Scholar 

  29. Boevink P, Oparka K, Santa Cruz S et al (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  30. Jaillais Y, Fobis-Loisy I, Miege C et al (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    Article  CAS  PubMed  Google Scholar 

  31. Takano J, Miwa K, Yuan L et al (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fluckiger R, De Caroli M, Piro G et al (2003) Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J Exp Bot 54:1577–1584

    Article  PubMed  Google Scholar 

  33. Benkova E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Scheres B (2005) Dissection of Arabidopsis ADP rybosilation factor 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249–256

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt 1120289 and FONDEF IDeA CA12I10206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Norambuena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rodriguez-Furlán, C., Hicks, G.R., Norambuena, L. (2014). Chemical Genomics: Characterizing Target Pathways for Bioactive Compounds Using the Endomembrane Trafficking Network. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics