Skip to main content

Analysis of Protein Dynamics with Tandem Fluorescent Protein Timers

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Fluorescent timers (FTs) are fluorescent proteins that change color with time. FTs can be used as tags to follow protein dynamics in living cells. Recently we described a novel class of FTs called tandem fluorescent protein timers (tFTs). Each tFT is a tandem fusion of two different conventional fluorescent proteins having distinct kinetics of fluorophore maturation. tFTs suitable for studying protein dynamics on different scales can be generated from a broad range of commonly used fluorescent proteins. Here we describe how to establish new tFTs and consider potential pitfalls. We detail a protocol for quantitative fluorescence microscopy imaging and analysis of intracellular protein dynamics with tFTs in the budding yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  4. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  5. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  7. Terskikh A, Fradkov A, Ermakova G et al (2000) “Fluorescent timer”: protein that changes color with time. Science 290:1585–1588

    Article  CAS  PubMed  Google Scholar 

  8. Subach FV, Subach OM, Gundorov IS et al (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tsuboi T, Kitaguchi T, Karasawa S et al (2010) Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein. Mol Biol Cell 21:87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Khmelinskii A, Keller PJ, Bartosik A et al (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30:708–714

    Article  CAS  PubMed  Google Scholar 

  11. Costantini LM, Fossati M, Francolini M, Snapp EL (2012) Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13:643–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Landgraf D, Okumus B, Chien P et al (2012) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  14. Donà E, Barry JD, Valentin G et al (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503(7475):285–289

    PubMed  Google Scholar 

  15. Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  16. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298–1345

    Article  CAS  PubMed Central  Google Scholar 

  17. Pédelacq J-D, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  18. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  19. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  20. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  21. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  22. Awaji T, Hirasawa A, Shirakawa H et al (2001) Novel green fluorescent protein-based ratiometric indicators for monitoring pH in defined intracellular microdomains. Biochem Biophys Res Commun 289:457–462

    Article  CAS  PubMed  Google Scholar 

  23. Gjetting SK, Ytting CK, Schulz A, Fuglsang AT (2012) Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63:3207–3218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Alon U (2006) An introduction to systems biology. Chapman & Hall, New York, NY

    Google Scholar 

  25. Yewdell JW, Lacsina JR, Rechsteiner MC, Nicchitta CV (2011) Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol Int 35:457–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Warner JR (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53:256–271

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  28. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  CAS  PubMed  Google Scholar 

  29. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  CAS  PubMed  Google Scholar 

  30. Baryshnikova A, Costanzo M, Dixon S et al (2010) Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol 470:145–179

    Article  CAS  PubMed  Google Scholar 

  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  32. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Kirrmaier and Matthias Meurer for help with the experiments and Joseph D. Barry and Leopold Parts for comments and acknowledge support from the European Molecular Biology Organization to AK (EMBO ALTF 1124-2010) and from the Deutsche Forschungsgemeinschaft (SFB1036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Knop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Khmelinskii, A., Knop, M. (2014). Analysis of Protein Dynamics with Tandem Fluorescent Protein Timers. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics