Skip to main content

Microbial Endocrinology and the Microbiota-Gut-Brain Axis

  • Chapter
  • First Online:
Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota’s ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

ENS:

Enteric nervous system

GABA:

Gamma aminobutyric acid

References

  1. Lyte M (1993) The role of microbial endocrinology in infectious disease. J Endocrinol 137(3):343–345

    Article  CAS  PubMed  Google Scholar 

  2. Lyte M (2010) Microbial endocrinology: a personal journey. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 1–16

    Chapter  Google Scholar 

  3. Lyte M (1992) The role of catecholamines in gram-negative sepsis. Med Hypotheses 37(4):255–258

    Article  CAS  PubMed  Google Scholar 

  4. Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50(3):203–212

    Article  CAS  PubMed  Google Scholar 

  5. Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12(1):14–20

    Article  CAS  PubMed  Google Scholar 

  6. Renaud M, Miget A (1930) Role favorisant des perturbations locales causees par l’ adrenaline sur le developpement des infections microbiennes. C R Seances Soc Biol Fil 103:1052–1054

    CAS  Google Scholar 

  7. Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant and animal cells. In: Lyte M, Freestone PP (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Chapter  Google Scholar 

  8. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372(1–6):115–117

    CAS  PubMed  Google Scholar 

  9. Guerrero HY, Caceres G, Paiva CL, Marcano D (1990) Hypothalamic and telencephalic catecholamine content in the brain of the teleost fish, Pygocentrus notatus, during the annual reproductive cycle. Gen Comp Endocrinol 80:257–263

    Article  CAS  PubMed  Google Scholar 

  10. Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172(3):433–440

    Article  CAS  Google Scholar 

  11. Pitman RM (1971) Transmitter substances in insects: a review. Comp Gen Pharmacol 2:347–371

    Article  CAS  PubMed  Google Scholar 

  12. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV (2004) Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20(7):292–299

    Article  CAS  PubMed  Google Scholar 

  13. Stephenson M, Rowatt E (1947) The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol 1(3):279–298

    Article  CAS  PubMed  Google Scholar 

  14. Devalia JL, Grady D, Harmanyeri Y, Tabaqchali S, Davies RJ (1989) Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol 42(5):516–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hsu SC, Johansson KR, Donahue MJ (1986) The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J Parasitol 72(4):545–549

    Article  CAS  PubMed  Google Scholar 

  16. Shahkolahi AM, Donahue MJ (1993) Bacterial flora, a possible source of serotonin in the intestine of adult female Ascaris suum. J Parasitol 79(1):17–22

    Article  CAS  PubMed  Google Scholar 

  17. Uzbay TI (2012) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36(1):502–519

    Article  CAS  PubMed  Google Scholar 

  18. Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90(2):158–162

    Article  CAS  PubMed  Google Scholar 

  19. Gale EF (1940) The production of amines by bacteria: the decarboxylation of amino-acids by strains of Bacterium coli. Biochem J 34(3):392–413

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Holzer P, Farzi A (2014) Neuropeptides and the microbiota-gut-brain axis. In: Lyte M, Cryan JF (eds) Microbial endocrinology: the microbiota-gut-brain axis in health and disease. Springer, New York (in this volume)

    Google Scholar 

  21. Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S et al (2013) Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 9(6):e1003107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Freestone PP, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16(2):55–64

    Article  CAS  PubMed  Google Scholar 

  23. Von Roepenack-Lahaye E, Newman M, Schornack S, Hammond-Kosack K, Lahaye T, Jones J et al (2003) p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278(44):43373–43383

    Article  Google Scholar 

  24. Zacares L, Lopez-Gresa MP, Fayos J, Primo J, Belles JM, Conejero V (2007) Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant Microbe Interact 20(11):1439–1448

    Article  CAS  PubMed  Google Scholar 

  25. Su MS, Schlicht S, Ganzle MG (2011) Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Fact 10(Suppl 1):S8

    Google Scholar 

  26. Foerster CW, Foerster HF (1973) Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J Bacteriol 114(3):1090–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gale EF (1941) Production of amines by bacteria: the decarboxylation of amino-acids by organisms of the groups Clostridium and Proteus With an addendum by G. L. Brown, F. C. MacIntosh and P. Bruce White. Biochem J 35(1–2):66–80

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Krantis A (2000) GABA in the mammalian enteric nervous system. News Physiol Sci 15:284–290

    CAS  PubMed  Google Scholar 

  29. Bjurstom H, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S et al (2008) GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 205(1–2):44–50

    Article  PubMed  Google Scholar 

  30. Nicholson-Guthrie CS, Guthrie GD, Daly EC, Shuck CS (1995) Determination of gamma-aminobutyric acid levels in human cerebrospinal fluid using Pseudomonas. Anal Biochem 225(2):286–290

    Article  CAS  PubMed  Google Scholar 

  31. Guthrie GD, Nicholson-Guthrie CS, Leary HL Jr (2000) A bacterial high-affinity GABA binding protein: isolation and characterization. Biochem Biophys Res Commun 268(1):65–68

    Article  CAS  PubMed  Google Scholar 

  32. Lyte M (2010) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74(4):634–638

    Article  PubMed  Google Scholar 

  33. Evans DG, Miles AA, Niven JS (1948) The enhancement of bacterial infections by adrenaline. Br J Exp Pathol 29(1):20–39

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Traub WH, Bauer D, Wolf U (1991) Virulence of clinical and fecal isolates of Clostridium perfringens type A for outbred NMRI mice. Chemotherapy 37(6):426–435

    Article  CAS  PubMed  Google Scholar 

  35. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100(15):8951–8956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Furness JB (2006) The enteric nervous system, Blackwell, Malden, MA, xiii, 274 pp

    Google Scholar 

  37. Bowdre JH, Krieg NR, Hoffman PS, Smibert RM (1976) Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Appl Environ Microbiol 31(1):127–133

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, Francis DH (1997) Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 232(3):682–686

    Article  CAS  PubMed  Google Scholar 

  39. Lyte M, Arulanandam B, Nguyen K, Frank C, Erickson A, Francis D (1997) Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli. Adv Exp Med Biol 412:331–339

    Article  CAS  PubMed  Google Scholar 

  40. Peterson G, Kumar A, Gart E, Narayanan S (2011) Catecholamines increase conjugative gene transfer between enteric bacteria. Microb Pathog 51(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  41. Oneal MJ, Schafer ER, Madsen ML, Minion FC (2008) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology 154(Pt 9):2581–2588

    Article  CAS  PubMed  Google Scholar 

  42. Bearson BL, Bearson SM, Uthe JJ, Dowd SE, Houghton JO, Lee I et al (2008) Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect 10(7):807–816

    Article  CAS  PubMed  Google Scholar 

  43. Nakano M, Takahashi A, Sakai Y, Nakaya Y (2007) Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J Infect Dis 195(9):1353–1360

    Article  CAS  PubMed  Google Scholar 

  44. Miles AA, Niven JS (1950) The enhancement of infection during shock produced by bacterial toxins and other agents. Br J Exp Pathol 31(1):73–95

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Miles AA, Miles EM, Burke J (1957) The value and duration of defence reactions of the skin to the primary lodgement of bacteria. Br J Exp Pathol 38(1):79–96

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Cooper EV (1946) Gas-gangrene following injection of adrenaline. Lancet 1(6396):459–461

    Article  CAS  PubMed  Google Scholar 

  47. O’Donnell PM, Aviles H, Lyte M, Sonnenfeld G (2006) Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 72(7):5097–5099

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lyte M, Frank CD, Green BT (1996) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139(2–3):155–159

    Article  CAS  PubMed  Google Scholar 

  49. Freestone PP, Haigh RD, Williams PH, Lyte M (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172(1):53–60

    Article  CAS  PubMed  Google Scholar 

  50. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    Article  CAS  PubMed  Google Scholar 

  51. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    Article  CAS  PubMed  Google Scholar 

  52. Yurdaydin C, Walsh TJ, Engler HD, Ha JH, Li Y, Jones EA et al (1995) Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy. Brain Res 679(1):42–48

    Article  CAS  PubMed  Google Scholar 

  53. Hu Y, Phelan V, Ntai I, Farnet CM, Zazopoulos E, Bachmann BO (2007) Benzodiazepine biosynthesis in Streptomyces refuineus. Chem Biol 14(6):691–701

    Article  CAS  PubMed  Google Scholar 

  54. Polacheck I, Platt Y, Aronovitch J (1990) Catecholamines and virulence of Cryptococcus neoformans. Infect Immun 58(9):2919–2922

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Liu L, Wakamatsu K, Ito S, Williamson PR (1999) Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infect Immun 67(1):108–112

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wood JD (2004) Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 127(2):635–657

    Article  CAS  PubMed  Google Scholar 

  58. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65(1):63–68

    Article  CAS  PubMed  Google Scholar 

  59. Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334–344

    Article  PubMed  Google Scholar 

  60. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    Article  CAS  PubMed  Google Scholar 

  61. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Collins SM, Kassam Z, Bercik P (2013) The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 16(3):240–245

    Article  PubMed  Google Scholar 

  63. Ko CY, Lin HTV, Tsai GJ (2013) Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem 48(4):559–568

    Article  CAS  Google Scholar 

  64. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33(8):574–581

    Article  CAS  PubMed  Google Scholar 

  65. Lyte M (2013) Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to-brain communication. PharmaNutrition 1(1):35–39

    Article  CAS  Google Scholar 

  66. Norris V, Molina F, Gewirtz AT (2013) Hypothesis: bacteria control host appetites. J Bacteriol 195(3):411–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E et al (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233

    PubMed Central  PubMed  Google Scholar 

  68. Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–S13

    Article  PubMed  Google Scholar 

  69. Mischke M, Plosch T (2013) More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am J Physiol Regul Integr Comp Physiol 304(12):R1065–R1069

    Article  CAS  PubMed  Google Scholar 

  70. Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27(1):59–72

    Article  CAS  PubMed  Google Scholar 

  71. Parr AM, Zoutman DE, Davidson JS (1999) Antimicrobial activity of lidocaine against bacteria associated with nosocomial wound infection. Ann Plast Surg 43(3):239–245

    Article  CAS  PubMed  Google Scholar 

  72. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R et al (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361(9352):130–135

    Article  CAS  PubMed  Google Scholar 

  73. Neal CP, Freestone PP, Maggs AF, Haigh RD, Williams PH, Lyte M (2001) Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative Staphylococci. FEMS Microbiol Lett 194(2):163–169

    Article  CAS  PubMed  Google Scholar 

  74. Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11(8):413–419

    Article  CAS  PubMed  Google Scholar 

  75. Vijayakumari K, Siddhuraju P, Janardhanan K (1996) Effect of different post-harvest treatments on antinutritional factors in seeds of the tribal pulse, Mucuna pruriens (L.) DC. Int J Food Sci Nutr 47(3):263–272

    Article  CAS  PubMed  Google Scholar 

  76. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M (2009) Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96(4–5):557–567

    Article  CAS  PubMed  Google Scholar 

  77. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294

    Article  CAS  PubMed  Google Scholar 

  78. Hanrieder J, Ljungdahl A, Andersson M (2012) MALDI imaging mass spectrometry of neuropeptides in Parkinson’s disease. J Vis Exp (60)

    Google Scholar 

  79. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  80. Al-Asmakh M, Anuar F, Zadjali F, Rafter J, Pettersson S (2012) Gut microbial communities modulating brain development and function. Gut Microbes 3(4):366–373

    Article  PubMed Central  PubMed  Google Scholar 

  81. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70(1):55–69

    Article  CAS  PubMed  Google Scholar 

  82. Forsythe P, Kunze WA, Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28(6):557–562

    Article  PubMed  Google Scholar 

  83. Douglas-Escobar M, Elliott E, Neu J (2013) Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 167(4):374–379

    Article  PubMed  Google Scholar 

  84. Lyte M, Bailey MT (1997) Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res 70(2):195–201

    Article  CAS  PubMed  Google Scholar 

  85. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25(3):397–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. McFarland LV (2008) Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol 3(5):563–578

    Article  PubMed  Google Scholar 

  87. Lyte M (2014) Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5(3); PMID: 24690573; http://dx.doi.org/10.4161/gmic.28682

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lyte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Lyte, M. (2014). Microbial Endocrinology and the Microbiota-Gut-Brain Axis. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_1

Download citation

Publish with us

Policies and ethics