Skip to main content

Structure Modeling of Toll-Like Receptors

  • Protocol
  • First Online:
Innate DNA and RNA Recognition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1169))

Abstract

Toll-like receptors (TLRs) recognize invasion of microbial pathogens and initiate innate immune responses that are essential for inhibiting pathogen dissemination and for the development of acquired immunity. To understand how these receptors work, it is crucial to investigate them from a structural perspective. High-throughput genome sequencing projects have led to the identification of more than 3,000 TLR sequences. However, only several structures of TLRs have been determined because structure determination by X-ray diffraction or nuclear magnetic resonance spectroscopy experiments remains difficult and time-consuming. Protein structure modeling methods are powerful tools for bridging the gap between sequence determination and structure determination. Due to different repeat numbers and distinct arrangements of leucine-rich repeats (LRRs) contained in TLR ectodomains, an automated homology modeling method often failed to predict a proper model. Here, we describe an LRR template assembly method for homology modeling of TLRs. This method was successfully validated through the comparison of a predicted model with the crystal structures, and showed better performance than other Protein structure modeling tools. The resulting models can be used to perform protein–ligand interaction studies or to design mutagenesis experiments, and hence to investigate TLR ligand-binding mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420(1):1–16

    Article  CAS  PubMed  Google Scholar 

  2. Gong J, Wei T, Zhang N, Jamitzky F, Heckl WM, Rossle SC, Stark RW (2010) TollML: a database of Toll-like receptor structural motifs. J Mol Model 16(7):1283–1289

    Article  CAS  PubMed  Google Scholar 

  3. Brodsky I, Medzhitov R (2007) Two modes of ligand recognition by TLRs. Cell 130(6):979–981

    Article  CAS  PubMed  Google Scholar 

  4. Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56

    Article  CAS  PubMed  Google Scholar 

  5. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by Toll-like receptors. Annu Rev Cell Dev Biol 22:409–437

    Article  CAS  PubMed  Google Scholar 

  6. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85(2):85–95

    Article  CAS  PubMed  Google Scholar 

  7. Leulier F, Lemaitre B (2008) Toll-like receptors: taking an evolutionary approach. Nat Rev Genet 9(3):165–178

    Article  CAS  PubMed  Google Scholar 

  8. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082

    Article  CAS  PubMed  Google Scholar 

  9. Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309(5734):581–585

    Article  CAS  PubMed  Google Scholar 

  10. Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, Davies DR (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci U S A 102(31):10976–10980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874):379–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130(5):906–917

    Article  CAS  PubMed  Google Scholar 

  13. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6):873–884

    Article  CAS  PubMed  Google Scholar 

  14. Ohto U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109(19):7421–7426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA (2012) Structural basis of TLR5-flagellin recognition and signaling. Science 335(6070):859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408(6808):111–115

    Article  CAS  PubMed  Google Scholar 

  17. Tao X, Xu Y, Zheng Y, Beg AA, Tong L (2002) An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem Biophys Res Commun 299(2):216–221

    Article  CAS  PubMed  Google Scholar 

  18. Nyman T, Stenmark P, Flodin S, Johansson I, Hammarstrom M, Nordlund P (2008) The crystal structure of the human Toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem 283(18):11861–11865

    Article  CAS  PubMed  Google Scholar 

  19. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  PubMed  Google Scholar 

  20. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  21. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wei T, Gong J, Rossle SC, Jamitzky F, Heckl WM, Stark RW (2011) A leucine-rich repeat assembly approach for homology modeling of the human TLR5-10 and mouse TLR11-13 ectodomains. J Mol Model 17(1):27–36

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36(Database issue):D13–D21

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rossle SC (2008) LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs). BMC Struct Biol 8:47

    Article  PubMed Central  PubMed  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  27. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19(18):2500–2501

    Article  CAS  PubMed  Google Scholar 

  29. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12(5):1073–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics 26(2):182–188

    Article  CAS  PubMed  Google Scholar 

  31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  CAS  PubMed  Google Scholar 

  33. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Maiti R, van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32(Web Server issue):W590–W594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Independent Innovation Foundation of Shandong University, China (No. 2011HW009) and the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China (No. BS2012SW010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiandi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Gong, J., Wei, T. (2014). Structure Modeling of Toll-Like Receptors. In: Anders, HJ., Migliorini, A. (eds) Innate DNA and RNA Recognition. Methods in Molecular Biology, vol 1169. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0882-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0882-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0881-3

  • Online ISBN: 978-1-4939-0882-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics