Skip to main content

Enzymatic Synthesis and Purification of a Defined RIG-I Ligand

  • Protocol
  • First Online:
Innate DNA and RNA Recognition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1169))

Abstract

Receptor-based nucleic acid sensing constitutes one of the most fundamental mechanisms of our innate immune system to sense viral infection. RIG-I is a cytosolic RNA helicase that senses the presence of 5′ triphosphate RNA species, a common feature of many negative strand RNA viruses. We here describe a protocol to enzymatically synthesize and to purify a defined RIG-I ligand that can be used to study RIG-I activation in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. doi:10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  2. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568. doi:10.1038/nri2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aoshi T, Koyama S, Kobiyama K, Akira S, Ishii KJ (2011) Innate and adaptive immune responses to viral infection and vaccination. Curr Opin Virol 1(4):226–232. doi:10.1016/j.coviro.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Schlee M, Hartmann G (2010) The chase for the RIG-I ligand: recent advances. Mol Ther 18(7):1254–1262. doi:10.1038/mt.2010.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. doi:10.1126/science.1132505

    Article  PubMed  Google Scholar 

  6. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001. doi:10.1126/science.1132998

    Article  CAS  PubMed  Google Scholar 

  7. Barchet W, Wimmenauer V, Schlee M, Hartmann G (2008) Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin Immunol 20(4):389–395. doi:10.1016/j.coi.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS, Kirschnek S, Gaffal E, Landsberg J, Hellmuth J, Schmidt A, Anz D, Bscheider M, Schwerd T, Berking C, Bourquin C, Kalinke U, Kremmer E, Kato H, Akira S, Meyers R, Hacker G, Neuenhahn M, Busch D, Ruland J, Rothenfusser S, Prinz M, Hornung V, Endres S, Tuting T, Hartmann G (2008) 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med 14(11):1256–1263. doi:10.1038/nm.1887

    Article  CAS  PubMed  Google Scholar 

  9. Kubler K, Gehrke N, Riemann S, Bohnert V, Zillinger T, Hartmann E, Polcher M, Rudlowski C, Kuhn W, Hartmann G, Barchet W (2010) Targeted activation of RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res 70(13):5293–5304. doi:10.1158/0008-5472.CAN-10-0825

    Article  PubMed  Google Scholar 

  10. Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C, Hornung V, Endres S, Ruzicka T, Rothenfusser S, Hartmann G (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119(8):2399–2411. doi:10.1172/JCI37155

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Glas M, Coch C, Trageser D, Dassler J, Simon M, Koch P, Mertens J, Quandel T, Gorris R, Reinartz R, Wieland A, Von Lehe M, Pusch A, Roy K, Schlee M, Neumann H, Fimmers R, Herrlinger U, Brustle O, Hartmann G, Besch R, Scheffler B (2013) Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells 31(6):1064–1074. doi:10.1002/stem.1350

    Article  CAS  PubMed  Google Scholar 

  12. Ebert G, Poeck H, Lucifora J, Baschuk N, Esser K, Esposito I, Hartmann G, Protzer U (2011) 5′ Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology 141(2):696–706. doi:10.1053/j.gastro.2011.05.001, 706 e691-693

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Wang X, Li J, Zhou Y, Ho W (2013) RIG-I activation inhibits HIV replication in macrophages. J Leukoc Biol 94:337–341. doi:10.1189/jlb.0313158

    Article  CAS  PubMed  Google Scholar 

  14. Goulet ML, Olagnier D, Xu Z, Paz S, Belgnaoui SM, Lafferty EI, Janelle V, Arguello M, Paquet M, Ghneim K, Richards S, Smith A, Wilkinson P, Cameron M, Kalinke U, Qureshi S, Lamarre A, Haddad EK, Sekaly RP, Peri S, Balachandran S, Lin R, Hiscott J (2013) Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity. PLoS Pathog 9(4):e1003298. doi:10.1371/journal.ppat.1003298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M, Pfeifer D, Maihoefer C, Endres S, Kalinke U, Meuth SG, Wiendl H, Knobeloch KP, Akira S, Waisman A, Hartmann G, Prinz M (2012) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 15(1):98–106. doi:10.1038/nn.2964

    Article  CAS  Google Scholar 

  16. Asdonk T, Motz I, Werner N, Coch C, Barchet W, Hartmann G, Nickenig G, Zimmer S (2012) Endothelial RIG-I activation impairs endothelial function. Biochem Biophys Res Commun 420(1):66–71. doi:10.1016/j.bbrc.2012.02.116

    Article  CAS  PubMed  Google Scholar 

  17. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31(1):25–34. doi:10.1016/j.immuni.2009.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18(8):1032–1043. doi:10.1016/j.str.2010.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17(7):781–787. doi:10.1038/nsmb.1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolakofsky D, Kowalinski E, Cusack S (2012) A structure-based model of RIG-I activation. RNA 18(12):2118–2127. doi:10.1261/rna.035949.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet MC, Besch R, Hopfner KP, Endres S, Rothenfusser S (2009) 5′-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106(29):12067–12072. doi:10.1073/pnas.0900971106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heutinck KM, Kassies J, Florquin S, ten Berge IJ, Hamann J, Rowshani AT (2012) SerpinB9 expression in human renal tubular epithelial cells is induced by triggering of the viral dsRNA sensors TLR3, MDA5 and RIG-I. Nephrol Dial Transplant 27(7):2746–2754. doi:10.1093/ndt/gfr690

    Article  CAS  PubMed  Google Scholar 

  23. Karpus ON, Heutinck KM, Wijnker PJ, Tak PP, Hamann J (2012) Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts. PLoS One 7(5):e35606. doi:10.1371/journal.pone.0035606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G.H. and V.H. are supported by the excellence cluster ImmunoSensation. M.S., G.H., and V.H. are supported by grants from the German Research Foundation (SFB704 to V.H. and G.H., SFB670 to M.S., G.H., and V.H., DFG Research Grants Program SCHL 1930/1-1 to M.S.) and the European Research Council (ERC 243046 to V.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Hornung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Goldeck, M., Schlee, M., Hartmann, G., Hornung, V. (2014). Enzymatic Synthesis and Purification of a Defined RIG-I Ligand. In: Anders, HJ., Migliorini, A. (eds) Innate DNA and RNA Recognition. Methods in Molecular Biology, vol 1169. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0882-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0882-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0881-3

  • Online ISBN: 978-1-4939-0882-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics