Skip to main content

Cryo-Scanning Electron Microscopy to Study the Freezing Behavior of Plant Tissues

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1166))

Abstract

A cryo-scanning electron microscope (cryo-SEM) is a valuable tool for observing bulk frozen samples to monitor freezing responses of plant tissues and cells. Here, essential processes of a cryo-SEM to observe freezing behaviors of plant tissue cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Echlin P (1971) The examination of biological material at low temperatures. In: Johari O, Corvin I (eds) Scanning electron microscopy. IITRI, Chicago, p 225–232

    Google Scholar 

  2. Nei T, Yotsumoto H, Hasegawa Y, Nagasawa Y (1973) Development of new cryo-unit attached to scanning electron microscope. J Electron Microsc 22:169–182

    Google Scholar 

  3. Sargent JA (1988) Low temperature scanning electron microscopy: advantages and application. Scanning Microsc 2:835–849

    CAS  PubMed  Google Scholar 

  4. Fujikawa S, Suzuki T, Ishikawa T, Sakurai S, Hasegawa Y (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replica by a new cryo-system. J Electron Microsc 37: 315–322

    CAS  Google Scholar 

  5. McCully ME, Canny MJ, Huang CX (2009) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: morphological and anatomical applications. Funct Plant Biol 36:97–124

    Article  Google Scholar 

  6. Utsumi Y, Sano Y, Ohtani J, Fujikawa S (1996) Seasonal changes in the distribution of water in the outer growth rings of Fraxinus mandshurica var. Japonica: a study by cryo-scanning electron microscopy. IAWA J 17:113–124

    Article  Google Scholar 

  7. Utsumi Y, Sano Y, Fujikawa S, Funada R, Ohtani J (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sano Y, Fujikawa S, Fukazawa K (1995) Detection and features of wetwood in Quercus mongolica var. grosseserrata. Trees Struct Funct 9:261–268

    Article  Google Scholar 

  9. Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32: 828–836

    Article  PubMed  Google Scholar 

  10. Cochard H, Bodet C, Ame’glio T, Cruiziat P (2000) Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nei T, Fujikawa S (1977) Freeze-drying process of biological specimens observed with a scanning electron microscope. J Microsc 111: 137–142

    Article  Google Scholar 

  12. Fujikawa S, Miura K (1986) Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-bodies of basidiomycetes (Lyophyllum ulmarium (Fr.) Kuhner). Cryobiology 23:371–382

    Article  Google Scholar 

  13. Fujikawa S (1990) Cryo-scanning electron microscope and freeze-replica study on the occurrence of slow freezing injury. J Electron Microsc 39:80–85

    Google Scholar 

  14. Pearce RS (1988) Extracellular ice and cell shape in frost-stressed cereal leaves: a low temperature scanning-electron-microscopy study. Planta 175:313–324

    Article  CAS  PubMed  Google Scholar 

  15. Pearce RS, Ashworth EN (1992) Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 188:324–331

    Article  CAS  PubMed  Google Scholar 

  16. Nagao M, Arakawa K, Takezawa D, Fujikawa S (2008) Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells. Planta 227:477–489

    Article  CAS  PubMed  Google Scholar 

  17. Ball MC, Canny MJ, Cheng X, Huang CX, Heady RD (2004) Structural changes in acclimated and unacclimated leaves during freezing and thawing. Funct Plant Biol 31:29–40

    Article  Google Scholar 

  18. Roden JS, Canny MJ, Huang CX, Ball MC (2009) Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Funct Plant Biol 36:180–189

    Article  Google Scholar 

  19. Endoh K, Fujikawa S, Arakawa K (2012) Freezing behavior of cells in evergreen needle leaves of fir (Abies sachalinensis). Cryobiol Cryotechnol 58:125–134

    Google Scholar 

  20. Ashworth EN, Pearce RS (2002) Extracellular freezing in leaves of freezing-sensitive species. Planta 214:798–805

    Article  CAS  PubMed  Google Scholar 

  21. Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215: 770–778

    Article  CAS  PubMed  Google Scholar 

  22. Ashworth EN, Echlin P, Pearce RS, Hayes TL (1988) Ice formation and tissue response in apple twigs. Plant Cell Environ 11:703–710

    Article  Google Scholar 

  23. Fujikawa S, Kuroda K, Ohtani J (1996) Seasonal changes in the low-temperature behaviour of xylem ray parenchyma cells in red osier dogwood (Cornus sericea L.) with respect to extracellular freezing and supercooling. Micron 27:181–191

    Article  Google Scholar 

  24. Kuroda K, Ohtani J, Fujikawa S (1997) Supercooling of xylem ray parenchyma cells in tropical and subtropical hardwood species. Trees Struct Funct 12:97–106

    Article  Google Scholar 

  25. Fujikawa S, Kuroda K, Ohtani J (1997) Seasonal changes in dehydration tolerance of xylem ray parenchyma cells of Stylax obassia twigs that survive freezing temperatures by deep supercooling. Protoplasma 197:34–44

    Article  Google Scholar 

  26. Kuroda K, Ohtani J, Kubota M, Fujikawa S (1999) Seasonal changes in the freezing behavior of xylem ray parenchyma cells in four boreal hardwood species. Cryobiology 38:81–88

    Article  PubMed  Google Scholar 

  27. Fujikawa S, Kuroda K, Jitsuyama Y, Sano Y, Ohtani J (1999) Freezing behavior of xylem ray parenchyma cells in softwood species with differences in the organization of cell walls. Protoplasma 206:31–40

    Article  Google Scholar 

  28. Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron 31:669–686

    Article  PubMed  Google Scholar 

  29. Kuroda K, Kasuga J, Arakawa K, Fujikawa S (2003) Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579

    Article  CAS  PubMed  Google Scholar 

  31. Kasuga J, Endoh K, Yoshiba M, Taido I, Arakawa K, Uemura M, Fujikawa S (2013) Roles of cell walls and intracellular contents in supercooling capability of xylem parenchyma cells of boreal trees. Physiol Plant 148:25–35

    Article  CAS  PubMed  Google Scholar 

  32. Endoh K, Kasuga J, Arakawa K, Fujikawa S (2009) Cryo-scanning electron microscopic study on freezing behaviors of tissue cells in dormant buds of larch (Larix kaempferi). Cryobiology 59:214–222

    Article  PubMed  Google Scholar 

  33. Fujikawa S (1991) Freeze-fracture techniques. In: Harris JR (ed) Electron microscopy in biology: a practical approach. IRL Press, Oxford, pp 173–201

    Google Scholar 

  34. Robards AW, Crosby P (1979) A comprehensive freezing, fracturing and coating system for low temperature scanning electron microscopy. Scanning Electron Microsc 2:325–343

    Google Scholar 

  35. Pawley J, Norton JT (1978) A chamber attached to the SEM for fracturing and coating frozen biological samples. J Microsc 112: 169–182

    Article  CAS  PubMed  Google Scholar 

  36. Bastacky J, Hook GR, Finch GL, Goerke J, Hayes TL (1987) Low-temperature scanning electron microscopy of frozen hydrated mouse lung. Scanning 9:57–70

    Article  Google Scholar 

  37. Fujikawa S, Suzuki T, Sakurai S (1990) Use of micromanipulator for continuous observation of frozen samples by cryo-scanning electron microscopy and freeze replicas. Scanning 12: 99–106

    Article  Google Scholar 

  38. Fujikawa S, Suzuki T, Ishikawa T, Sakurai S (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replicas by a new cryo-system. J Electron Microsc 37:315–322

    CAS  Google Scholar 

  39. Muller M, Meister N, Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140

    CAS  PubMed  Google Scholar 

  40. Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci U S A 68:2149–2152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Heuser JE, Reese TE, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81: 275–300

    Article  CAS  PubMed  Google Scholar 

  42. Moor H, Bellin G, Sandri C, Akert K (1980) The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res 209: 201–216

    Article  CAS  PubMed  Google Scholar 

  43. Umrath W (1983) Calculation of the freeze-drying time for electron-microscopical preparations. Mikroskopie 40:9–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of authors (S.F.) sincerely appreciates the strong support by JEOL Co. Ltd. for improvement and development of a cryo-SEM since my start of studies using a cryo-SEM in 1974. The authors also appreciate the excellent works by Mr. K. Shinbori, Institute of Low Temperature Science, Hokkaido University, for making many apparatuses of a cryo-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seizo Fujikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fujikawa, S., Endoh, K. (2014). Cryo-Scanning Electron Microscopy to Study the Freezing Behavior of Plant Tissues. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0844-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0843-1

  • Online ISBN: 978-1-4939-0844-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics