Skip to main content

Role of Posttranslational Protein Modifications in Epididymal Sperm Maturation and Extracellular Quality Control

  • Chapter
  • First Online:
Posttranslational Protein Modifications in the Reproductive System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 759))

Abstract

The epididymal lumen is a complex microenvironment in which spermatozoa acquire motility and fertility. Spermatozoa are synthetically inactive and therefore the maturation process requires their interaction with proteins that are synthesized and secreted in a highly regionalized manner by the epididymal epithelium. In addition to the integration of epididymal secretory proteins, posttranslational modifications of existing sperm proteins are important for sperm maturation and acquisition of fertilizing potential. Phosphorylation, glycosylation, and processing are several of the posttranslational modifications that sperm proteins undergo during epididymal transit resulting in changes in protein function and localization ultimately leading to mature spermatozoa. In addition to these well-characterized modifications, protein aggregation and cross-linking also occur within the epididymal lumen and may represent unique mechanisms for controlling protein function including that for maturation as well as for extracellular quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein LD. Human genome: end of the beginning. Nature. 2004;431:915–6.

    CAS  PubMed  Google Scholar 

  2. Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 2004;8:33–41.

    PubMed  Google Scholar 

  3. Walsh C. Posttranslational modification of proteins: expanding nature’s inventory. Englewood: Roberts and Co Publishers; 2006. xxi, 490 pp.

    Google Scholar 

  4. Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90. doi:10.1038/srep00090.

    CAS  PubMed Central  Google Scholar 

  5. Lewis B, Aitken RJ. Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biol Reprod. 2001;64:1545–56.

    CAS  PubMed  Google Scholar 

  6. Fabrega A, Puigmule M, Yeste M, Casas I, Bonet S, Pinart E. Impact of epididymal maturation, ejaculation and in vitro capacitation on tyrosine phosphorylation patterns exhibited of boar (Sus domesticus) spermatozoa. Theriogenology. 2011;76:1356–66.

    CAS  PubMed  Google Scholar 

  7. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121:1129–37.

    CAS  PubMed  Google Scholar 

  8. Caballero J, Frenette G, D’Amours O, Dufour M, Oko R, Sullivan R. ATP-binding cassette transporter G2 activity in the bovine spermatozoa is modulated along the epididymal duct and at ejaculation. Biol Reprod. 2012;86:1–11.

    Google Scholar 

  9. Baker MA, Witherdin R, Hetherington L, Cunningham-Smith K, Aitken RJ. Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics. 2005;5:1003–12.

    CAS  PubMed  Google Scholar 

  10. Steinberg RA. Cyclic AMP-dependent phosphorylation of the precursor to beta subunit of mitochondrial F1-ATPase: a physiological mistake? J Cell Biol. 1984;98:2174–8.

    CAS  PubMed  Google Scholar 

  11. Ecroyd H, Asquith KL, Jones RC, Aitken RJ. The development of signal transduction pathways during epididymal maturation is calcium-dependent. Dev Biol. 2004;268:53–63.

    CAS  PubMed  Google Scholar 

  12. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF, Visconti PE. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278:11579–89.

    CAS  PubMed  Google Scholar 

  13. Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ. Use of titanium dioxide to find phosphopeptide and total protein changes during epididymal sperm maturation. J Proteome Res. 2011;10:1004–17.

    CAS  PubMed  Google Scholar 

  14. Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res. 2012;11:5252–64.

    CAS  PubMed  Google Scholar 

  15. Gibbs GM, Bianco DM, Jamsai D, Herlihy A, Ristevski S, Aitken RJ, Kretser DM, O’Bryan MK. Cysteine-rich secretory protein 2 binds to mitogen-activated protein kinase kinase kinase 11 in mouse sperm. Biol Reprod. 2007;77:108–14.

    CAS  PubMed  Google Scholar 

  16. Luconi M, Barni T, Vannelli GB, Krausz C, Marra F, Benedetti PA, Evangelista V, Francavilla S, Properzi G, Forti G, Baldi E. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Biol Reprod. 1998;58:1476–89.

    CAS  PubMed  Google Scholar 

  17. Nixon B, Bielanowicz A, Anderson AL, Walsh A, Hall T, Mccloghry A, Aitken RJ. Elucidation of the signaling pathways that underpin capacitation-associated surface phosphotyrosine expression in mouse spermatozoa. J Cell Physiol. 2010;224:71–83.

    CAS  PubMed  Google Scholar 

  18. Ackermann F, Zitranski N, Borth H, Beuch T, Gudermann T, Boekhoff I. CaMKIIα interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci. 2009;122:4547–57.

    PubMed  Google Scholar 

  19. Luo J, Gupta V, Kern B, Tash JS, Sanchez G, Blanco G, Kinsey WH. Role of FYN kinase in spermatogenesis: defects characteristic of Fyn-null sperm in mice. Biol Reprod. 2012;86:1–8.

    PubMed  Google Scholar 

  20. Lachance C, Leclerc P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol Reprod. 2011;85:1222–31.

    CAS  PubMed  Google Scholar 

  21. Somanath PR, Jack SL, Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation. J Androl. 2004;25:605–17.

    CAS  PubMed  Google Scholar 

  22. Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci. 2006;119:3182–92.

    CAS  PubMed  Google Scholar 

  23. Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem. 2010;285:7977–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S, Visconti PE. cSRC is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol. 2012;369:43–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111:645–56.

    CAS  PubMed  Google Scholar 

  26. Vijayaraghavan S, Stephens DT, Trautman K, Smith GD, Khatra B, da Cruz e Silva EF, Greengard P. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod. 1996;54:709–18.

    CAS  PubMed  Google Scholar 

  27. Goto N, Harayama H. Calyculin A-sensitive protein phosphatases are involved in maintenance of progressive movement in mouse spermatozoa in vitro by suppression of autophosphorylation of protein kinase A. J Reprod Dev. 2009;55:327–34.

    CAS  PubMed  Google Scholar 

  28. Huang Z, Vijayaraghavan S. Increased phosphorylation of a distinct subcellular pool of protein phosphatase, PP1gamma2, during epididymal sperm maturation. Biol Reprod. 2004;70:439–47.

    CAS  PubMed  Google Scholar 

  29. Schroter S, Osterhoff C, McArdle W, Ivell R. The glycocalyx of the sperm surface. Hum Reprod Update. 1999;5:302–13.

    CAS  PubMed  Google Scholar 

  30. Srivastava A, Olson GE. Glycoprotein changes in the rat sperm plasma membrane during maturation in the epididymis. Mol Reprod Dev. 1991;4:357–64.

    Google Scholar 

  31. Srivastav A. Maturation-dependent glycoproteins containing both N-linked and O-linked oligosaccharides in epididymal sperm plasma membrane of rhesus monkeys (Macaca mulatta). J Reprod Fertil. 2000;119:241–52.

    CAS  PubMed  Google Scholar 

  32. Srivastav A, Singh B, Chandra A, Jamal F, Khan MY, Chowdhury SR. Partial characterization, sperm association and significance of N-linked and O-linked glycoproteins in epididymal fluid of rhesus monkeys (Masasa mulatta). Reproduction. 2004;127:343–57.

    CAS  PubMed  Google Scholar 

  33. Fabrega A, Puigmule M, Dacheux JL, Bonet S, Pinart E. Glycocalyx characterization and glycoprotein expression of Sus domesticus epididymal sperm surface samples. Reprod Fertil Dev. 2012;24:619–30.

    CAS  PubMed  Google Scholar 

  34. Toyonaga M, Morita M, Hori T, Tsutsui T. Distribution of glycoproteins on feline testicular sperm, epididymal sperm and ejaculated sperm. J Vet Med Sci. 2011;73:827–9.

    CAS  PubMed  Google Scholar 

  35. Deng X, Czymmek K, Martin-DeLeon PA. Biochemical maturation of Spam1 (PH-20) during epididymal transit of mouse sperm involves modifications of N-linked oligosaccharides. Mol Reprod Dev. 1999;52:196–206.

    CAS  PubMed  Google Scholar 

  36. Saxena DK, Oh-Oka T, Kadomatsu K, Muramatsu T, Toshimori K. Behaviour of sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice. Reproduction. 2002;123:435–44.

    CAS  PubMed  Google Scholar 

  37. Yanagimachi R, Noda YD, Fujimoto M, Nicolson GL. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972;135:497–519.

    CAS  PubMed  Google Scholar 

  38. Eddy EM, Vernon RB, Muller CH, Hahnel AC, Fenderson BA. Immunodissection of sperm surface modifications during epididymal maturation. Am J Anat. 1985;174:225–37.

    CAS  PubMed  Google Scholar 

  39. Arenas MI, de Miguel MP, Bethencourt FR, Fraile B, Royuela M, Paniagua R. Lectin histochemistry in the human epididymis. J Reprod Fertil. 1996;106:313–20.

    CAS  PubMed  Google Scholar 

  40. Brooks DE. Purification of rat epididymal proteins “D” and “E”, demonstration of shared immunological determinants, and identification of regional synthesis and secretion. Int J Androl. 1982;5:513–24.

    CAS  PubMed  Google Scholar 

  41. Tulsiani DRP, Skudlarek MD, Holland ML, Orgebin-Crist MC. Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol Reprod. 1993;48:417–28.

    CAS  PubMed  Google Scholar 

  42. Tulsiani DRP, Skudlarek MD, Araki Y, Orgebin-Crist MC. Purification and characterization of two forms of beta-d-galactosidase from rat epididymal luminal fluid: evidence for their role in the modification of sperm plasma membrane glycoprotein(s). Biochem J. 1995;305: 41–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Tulsiani DRP, Orgebin-Crist MC, Skudlarek MD. Role of luminal fluid glycosyltransferases and glycosidases in the modification of rat sperm plasma membrane glycoproteins during epididymal maturation. In: Jones RC, Holland MK, Doberska C, editors. The epididymis: cellular and molecular aspects. Cambridge: The Journals of Reproduction and Fertility Ltd; 1998. p. 85–97.

    Google Scholar 

  44. Johnston DS, Wright WW, Shaper JH, Hokke CH, Van den Eijnden DH, Joziasse DH. Murine sperm-zona binding, a fucosyl residue is required for a high affinity sperm-binding ligand. A second site on sperm binds a nonfucosylated, beta-galactosyl-capped oligosaccharide. J Biol Chem. 1998;273:1888–95.

    CAS  PubMed  Google Scholar 

  45. Tanghe S, Van Soom A, Duchateau L, Nauwynck H, de Kruif A. Carbohydrates and glycoproteins involved in bovine fertilization in vitro. Mol Reprod Dev. 2004;68(4):492–9.

    CAS  PubMed  Google Scholar 

  46. Tulsiani DRP. Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol Cell Endocrinol. 2006;250:58–65.

    CAS  PubMed  Google Scholar 

  47. Belleannée C, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F. Identification of luminal and secreted proteins in bull epididymis. J Proteomics. 2011;74:59–78.

    PubMed  Google Scholar 

  48. Phelps BM, Koppel DE, Primakoff P, Myles DG. Evidence that proteolysis of the surface is an initial step in the mechanisms of formation of sperm cell surface domains. J Cell Biol. 1990;111:1839–47.

    CAS  PubMed  Google Scholar 

  49. Kim T, Oh J, Woo JM, Choi E, Im SH, Yoo YJ, Kim DH, Nishimura H, Cho C. Expression and relationship of male reproductive ADAMs in mouse. Biol Reprod. 2006;74:744–50.

    CAS  PubMed  Google Scholar 

  50. Han C, Choi E, Park I, Lee B, Jin S, do Kim H, Nishimura H, Cho C. Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol Reprod. 2009;80:1001–8.

    CAS  PubMed  Google Scholar 

  51. Cho C, Ge H, Branciforte D, Primakoff P, Myles DG. Analysis of fertilin in wild-type and fertilin beta (−/−) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm–egg fusion. Dev Biol. 2000;222:289–95.

    CAS  PubMed  Google Scholar 

  52. Hunnicutt GR, Koppel DE, Myles DG. Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis. Dev Biol. 1997;191:146–59.

    CAS  PubMed  Google Scholar 

  53. Linder B, Bammer S, Heinlein UA. Delayed translation and posttranslational processing of cyritestin, an integral transmembrane protein of the mouse acrosome. Exp Cell Res. 1995;221: 66–72.

    CAS  PubMed  Google Scholar 

  54. Kim E, Mishimura H, Iwase S, Yamagata K, Kashiwabara S, Baba T. Synthesis, processing, and subcellular localization of mouse ADAM3 during spermatogenesis and epididymal sperm transport. J Reprod Dev. 2004;50:571–8.

    CAS  PubMed  Google Scholar 

  55. Yamaguchi R, Yamagata K, Ikawa M, Moss SB, Okabe M. Aberrant distribution of ADAM3 in sperm from both angiotensin-converting enzyme (Ace)- and calmegin (Clgn)-deficient mice. Biol Reprod. 2006;75:760–6.

    CAS  PubMed  Google Scholar 

  56. Cho C. Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol. 2012;9:550–60.

    CAS  PubMed  Google Scholar 

  57. Marcello MR, Jia W, Leary JA, Moore KL, Evans JP. Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm–egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm. J Biol Chem. 2011;286:13060–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Cha SW, Tadjuidje E, White J, Wells J, Mayhew C, Wylie C, Heasman J. Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr Biol. 2009;19:1573–80.

    CAS  PubMed  Google Scholar 

  59. Lum L, Reid MS, Blobel CP. Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem. 1998;273:26236–47.

    CAS  PubMed  Google Scholar 

  60. Pasten-Hidalgo K, Hernandez-Rivas R, Roa-Espitia AL, Sanchez-Gutierrez M, Martinez-Perez F, Monrroy AO, Hernandez-Gonzalez E, Mujica A. Presence, processing, and localization of mouse ADAM15 during sperm maturation and the role of its disintegrin domain during sperm–egg binding. Reproduction. 2008;136:41–51.

    CAS  PubMed  Google Scholar 

  61. Zhu GZ, Myles DG, Primakoff P. Testase 1 (ADAM 24) a plasma membrane-anchored sperm protease implicated in sperm function during epididymal maturation or fertilization. J Cell Sci. 2001;114:1787–94.

    CAS  PubMed  Google Scholar 

  62. Roberts KP, Ensrud KM, Hamilton DW. A comparative analysis of expression and processing of the rat epididymal fluid and sperm-bound forms of proteins D and E. Biol Reprod. 2002;67:525–33.

    CAS  PubMed  Google Scholar 

  63. Huang YH, Wei CC, Su YH, Wu BT, Ciou YY, Tu CF, Cooper TG, Yeung CH, Chu ST, Tsai MT, Yang RB. Localization and characterization of an orphan receptor, guanylyl cyclase-G in mouse testis and sperm. Endocrinology. 2006;147:4792–800.

    CAS  PubMed  Google Scholar 

  64. Burkin HR, Zhao L, Miller DJ. CASK is in the mammalian sperm head and is processed during epididymal maturation. Mol Reprod Dev. 2004;68:500–6.

    CAS  PubMed  Google Scholar 

  65. Petruszak JA, Nehme CL, Bartles JR. Endoproteolytic cleavage in the extracellular domain of the integral plasma membrane protein CE9 precedes its redistribution from the posterior to the anterior tail of the rat spermatozoon during epididymal maturation. J Cell Biol. 1991;114:917–27.

    CAS  PubMed  Google Scholar 

  66. Tulsiani DR, NagDas SK, Skudlarek MD, Orgebin-Crist MC. Rat sperm plasma membrane mannosidase: localization and evidence for proteolytic processing during epididymal maturation. Dev Biol. 1995;167:584–95.

    CAS  PubMed  Google Scholar 

  67. Rutllant J, Meyers SA. Posttranslational processing of PH-20 during epididymal sperm maturation in the horse. Biol Reprod. 2001;65:1324–31.

    CAS  PubMed  Google Scholar 

  68. Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R, Takeda J. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med. 2005;11:160–6.

    CAS  PubMed  Google Scholar 

  69. Thimon V, Metayer S, Belghazi M, Dacheux F, Dacheux JL, Gatti JL. Shedding of the germinal angiotensin I-converting enzyme (gACE) involves a serine protease and is activated by epididymal fluid. Biol Reprod. 2005;73:881–90.

    CAS  PubMed  Google Scholar 

  70. Lum L, Blobel CP. Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev Biol. 1997;191:131–45.

    CAS  PubMed  Google Scholar 

  71. Blobel CP. Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev Reprod. 2000;5:75–83.

    CAS  PubMed  Google Scholar 

  72. Loechel F, Overgaard MT, Oxvig C, Albrechtsen R, Wewer UM. Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J Biol Chem. 1999;274:13427–33.

    CAS  PubMed  Google Scholar 

  73. Thimon V, Belghazi M, Dacheuz JL, Gatti JL. Analysis of furin ectodomain shedding in epididymal fluid of mammals: demonstration that shedding of furin occurs in vivo. Reproduction. 2006;132:899–908.

    CAS  PubMed  Google Scholar 

  74. Gyamera-Acheampong C, Tantibhedhyangkul J, Weerachatyanukul W, Tadros H, Xu H, van de Loo JW, Pelletier RM, Tanphaichitr N, Mbikay M. Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol Reprod. 2006;74:666–73.

    CAS  PubMed  Google Scholar 

  75. Gyamera-Acheampong C, Vasilescu J, Figeys D, Mbikay M. PCSK4-null sperm display enhanced protein tyrosine phosphorylation and ADAM2 proteolytic processing during in vitro capacitation. Fertil Steril. 2010;93:1112–23.

    CAS  PubMed  Google Scholar 

  76. Iamsaard S, Vanichviriyakit R, Hommalai G, Saewu A, Srakaew N, Withyachumnarnkul B, Basak A, Tanphaichitr N. Enzymatic activity of sperm proprotein convertase is important for mammalian fertilization. J Cell Physiol. 2011;226:2817–26.

    CAS  PubMed  Google Scholar 

  77. Tardif S, Guyonnet B, Cormier N, Cornwall GA. Alteration in the processing of the ACRBP/sp32 protein and sperm head/acrosome malformations in proprotein convertase 4 (PCSK4) null mice. Mol Hum Reprod. 2012;18:298–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mishra P, Qiu Q, Gruslin A, Hidaka Y, Mbikay M, Basak A. In vitro regulatory effect of epididymal serpin CRES on protease activity of proprotein convertase PC4/PCSK4. Curr Mol Med. 2012;12:1050–67.

    CAS  PubMed  Google Scholar 

  79. Netzel-Arnett S, Bugge TH, Hess RA, Carnes K, Stringer BW, Scarman AL, Hooper JD, Tonks ID, Kay GF, Antalis TM. The glycosylphosphatidylinositol-anchored seine protease PRSS21 (testisin) imparts murine epididymal sperm maturation and fertilizing ability. Biol Reprod. 2009;81:921–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Jalkanen J, Kotimäki M, Huhtaniemi I, Poutanen M. Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochem Biophys Res Commun. 2006;349:245–54.

    CAS  PubMed  Google Scholar 

  81. Ma L, Yu H, Ni Z, Hu S, Ma W, Chu C, Liu Q, Zhang Y. Spink13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility. J Biol Chem. 2013;14:10154–65.

    Google Scholar 

  82. Sivashanmugam P, Hall SH, Hamil KG, French FS, O’Rand MG, Richardson RT. Characterization of mouse Eppin and a gene cluster of similar protease inhibitors on mouse chromosome 2. Gene. 2003;312:125–34.

    CAS  PubMed  Google Scholar 

  83. Clauss A, Persson M, Lilja H, Lundwall A. Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products. BMC Biochem. 2011;12:55.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. McCrudden MT, Dafforn TR, Houston DF, Turkington PT, Timson DJ. Functional domains of the human epididymal protease inhibitor, eppin. FEBS J. 2008;275:1742–50.

    CAS  PubMed  Google Scholar 

  85. Speeckaert MM, Speeckaert R, Delanghe JR. Human epididymis protein 4 in cancer diagnostics: a promising and reliable tumor marker. Adv Clin Chem. 2013;59:1–21.

    CAS  PubMed  Google Scholar 

  86. Cornwall GA, Hsia N. A new subgroup of the family 2 cystatins. Mol Cell Endocrinol. 2003;200:1–8.

    CAS  PubMed  Google Scholar 

  87. Cornwall GA, Cameron A, Lindberg I, Hardy DM, Cormier N, Hsia N. The cystatin-related epididymal spermatogenic protein inhibits the serine protease prohormone convertase 2. Endocrinology. 2003;144:901–8.

    CAS  PubMed  Google Scholar 

  88. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci. 2001;114:1665–75.

    CAS  PubMed  Google Scholar 

  89. Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, Yi YJ, Sutovsky P. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol. 2008;215:684–96.

    CAS  PubMed  Google Scholar 

  90. Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech. 2003;61:88–102.

    CAS  PubMed  Google Scholar 

  91. Bardin CW, Gagnon C. The possible role of protein-carboxyl methylation in sperm motility and capacitation. Prog Clin Biol Res. 1982;87:217–34.

    CAS  PubMed  Google Scholar 

  92. Fisher-Fischbein J, Gagnon C, Bardin CW. The relationship between glycolysis, mitochondrial respiration, protein-carboxyl methylation and motility in hamster epididymal spermatozoa. Int J Androl. 1985;8:403–16.

    CAS  PubMed  Google Scholar 

  93. Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971;13 Suppl 13:65–75.

    PubMed  Google Scholar 

  94. Shalgi R, Seligman J, Kosower NS. Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod. 1989;40:1037–45.

    CAS  PubMed  Google Scholar 

  95. Calvin HI, Yu CC, Bedford JM. Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa. Exp Cell Res. 1973;81:333–41.

    CAS  PubMed  Google Scholar 

  96. Cabrillana ME, Monclus MA, Saez Lancellotti TE, Boarelli PV, Clementi MA, Vincenti AE, Yunes RF, Fornes MW. Characterization of flagellar cysteine-rich sperm proteins involved in motility, by the combination of cellular fractionation, fluorescence detection, and mass spectrometry analysis. Cytoskeleton. 2011;68:491–500.

    CAS  PubMed  Google Scholar 

  97. Chaudhuri DP, Majumder GC. Evidence for the reconstitution of motility by epididymal plasma-protein factor(s) in immotile washed spermatozoa from goat cauda epididymis. Andrologia. 1983;15(5):495–7.

    CAS  PubMed  Google Scholar 

  98. Cornwall GA, Vindivich D, Tillman S, Chang TS. The effect of sulfhydryl oxidation on the morphology of immature hamster epididymal spermatozoa induced to acquire motility in vitro. Biol Reprod. 1988;39:141–55.

    CAS  PubMed  Google Scholar 

  99. Yanagimachi R, Huang TTF, Fleming AD, Kowoser NS, Nicolson GL. Dithiothreitol, a disulfide-reducing agent, inhibits capacitation, acrosome reaction, and interaction with eggs by guinea pig spermatozoa. Gamete Res. 1983;7:145–54.

    CAS  Google Scholar 

  100. Seigman J, Kosower NS, Shalgi R. Effects of castration on thiol status in rat spermatozoa and epididymal fluid. Mol Reprod Dev. 1997;47:295–301.

    Google Scholar 

  101. Chang TS, Zirkin BR. Distribution of sulfhydryl oxidase activity in the rat and hamster male reproductive tract. Biol Reprod. 1978;18:745–8.

    CAS  PubMed  Google Scholar 

  102. Akama K, Horikoshi T, Sugiyama A, Nakahata S, Akitsu A, Niwa N, Intoh A, Kakui Y, Sugaya M, Takei K, Amaizumi N, Sato T, Matsumoto R, Iwahashi H, Kashiwabara S, Baba T, Nakamura M, Toda T. Protein disulfide isomerase-P5, down-regulated in the final stage of boar epididymal sperm maturation, catalyzes disulfide formation to inhibit protein function in oxidative refolding of reduced denatured lysozyme. Biochim Biophys Acta. 1804;2010: 1272–84.

    Google Scholar 

  103. Seligman J, Zipser Y, Kowoser NS. Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa. Biol Reprod. 2004;71:1009–15.

    CAS  PubMed  Google Scholar 

  104. Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008;454:1088–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006;4(1):e6.

    PubMed Central  PubMed  Google Scholar 

  106. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325:328–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. von Horsten HH, Johnson SS, SanFrancisco SK, Hastert MC, Whelly SM, Cornwall GA. Oligomerization and transglutaminase cross-linking of the cystatin CRES in the mouse epididymal lumen: potential mechanism of extracellular quality control. J Biol Chem. 2007;282:32912–23.

    Google Scholar 

  108. Whelly S, Johnson S, Powell J, Borchardt C, Hastert MC, Cornwall GA. Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS One. 2012;7:e36394.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol. 2001;8:316–20.

    CAS  PubMed  Google Scholar 

  110. Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int. 2010;2011:757194.

    PubMed Central  PubMed  Google Scholar 

  111. Ecroyd H, Belghazi M, Dacheux JL, Gatti JL. The epididymal soluble prion protein forms a high-molecular-mass complex in association with hydrophobic proteins. Biochem J. 2005;392:211–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Asquith KL, Harman AJ, McLaughlin EA, Nixon B, Aitken RJ. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol Reprod. 2005;72:328–37.

    CAS  PubMed  Google Scholar 

  113. Griffiths GS, Galileo DS, Aravindan RG, Martin-DeLeon PA. Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes. Biol Reprod. 2009;81:562–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm–oocyte interaction. J Biol Chem. 2011;286:36875–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Redgrove KA, Nixon B, Baker MA, Hetherington L, Baker G, Liu DY, Aitken RJ. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm–egg recognition. PLoS One. 2012;7:e50851.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Redgrove KA, Anderson AL, McLaughlin EA, O’Bryan MK, Aitken RJ, Nixon B. Investigation of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm surface receptors involved in human sperm–oocyte recognition. Mol Hum Reprod. 2013;19:120–35.

    CAS  PubMed  Google Scholar 

  117. Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature’s biological glues. Biochem J. 2002;368:377–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Grasso P, Reichert Jr LE. Stabilization of follicle-stimulating hormone-receptor complexes may involve calcium-dependent transglutaminase activation. Mol Cell Endocrinol. 1992;87:49–56.

    CAS  PubMed  Google Scholar 

  119. Peter A, Lilja H, Lundwall A, Malm J. Semenogelin I and semenogelin II, the major gel-forming proteins in human semen, are substrates for transglutaminase. Eur J Biochem. 1998;252:216–21.

    CAS  PubMed  Google Scholar 

  120. de Lamirande E, Gagnon C. Effects of transglutaminase substrates and inhibitors on the motility of demembranated reactivated spermatozoa. Gamete Res. 1989;22:179–92.

    PubMed  Google Scholar 

  121. Mukherjee DC, Agrawal AK, Manjunath R, Mukherjee AB. Suppression of epididymal sperm antigenicity in the rabbit by uteroglobin and transglutaminase in vitro. Science. 1983;219:989–91.

    CAS  PubMed  Google Scholar 

  122. Peluso G, Porta R, Esposito CK, Tufano MA, Toraldo R, Vuotto ML, Ravagnan G, Metafora S. Suppression of rat epididymal sperm immunogenicity by a seminal vesicle secretory protein and transglutaminase both in vivo and in vitro. Biol Reprod. 1994;50:593–602.

    CAS  PubMed  Google Scholar 

  123. Aumuller G, Hunteman S, Larsch KP, Seitz J. Transglutaminase immunoreactivity in the male genital tract of the rat. Acta Histochem Suppl. 1990;38:209–12.

    CAS  PubMed  Google Scholar 

  124. Paonessa G, Metafora S, Tajana G, Abrescia P, De Santis A, Gentile V, Porta R. Transglutaminase-mediated modifications of the rat sperm surface in vitro. Science. 1984;226:852–5.

    CAS  PubMed  Google Scholar 

  125. Minton AP. Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci. 2005;94:1668–75.

    CAS  PubMed  Google Scholar 

  126. Dacheux JL, Dacheux F. Protein secretion in the epididymis. In: Robaire B, Hinton B, editors. The epididymis: from molecules to clinical practice. New York: Kluwer/Plenum; 2002. p. 151–68.

    Google Scholar 

  127. Cornwall GA, von Horsten HH, Swartz D, Johnson S, Chau K, Whelly S. Extracellular quality control in the epididymis. Asian J Androl. 2007;9:1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail A. Cornwall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cornwall, G.A. (2014). Role of Posttranslational Protein Modifications in Epididymal Sperm Maturation and Extracellular Quality Control. In: Sutovsky, P. (eds) Posttranslational Protein Modifications in the Reproductive System. Advances in Experimental Medicine and Biology, vol 759. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0817-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0817-2_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0816-5

  • Online ISBN: 978-1-4939-0817-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics